Skip to main content
Log in

Fixed versus variable time window warehousing strategies in real time

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Warehousing includes many different regular activities such as receiving, batching, picking, packaging, and shipping goods. Several authors indicate that the picking operation might consume up to 55% of the total operational costs. In this paper, we deal with a subtask arising within the picking task in a warehouse, when the picking policy follows the order batching strategy (i.e., orders are grouped into batches before being collected) and orders are received online. Particularly, once the batches have been compiled it is necessary to determine the moment in the time when the picker starts collecting each batch. The waiting time of the picker before starting to collect the next available batch is usually known as time window. In this paper, we compare the performance of two different time window strategies: Fixed Time Window and Variable Time Window. Since those strategies cannot be tested in isolation, we have considered: two different batching algorithms (First Come First Served and a Greedy algorithm based on weight); one routing algorithm (S-Shape); and a greedy selection algorithm for choosing the next batch to collect based on the weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Albareda-Sambola, M., Alonso-Ayuso, A., Molina, E., De Blas, C.S.: Variable neighborhood search for order batching in a warehouse. Asia Pac. J. Oper. Res. 26(5), 655–683 (2009)

    Article  MATH  Google Scholar 

  2. Bukchin, Y., Khmelnitsky, E., Yakuel, P.: Optimizing a dynamic order-picking process. Eur. J. Oper. Res. 219(2), 335–346 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cano, J.A., Correa-Espinal, A.A., Gómez-Montoya, R.A.: Mathematical programming modeling for joint order batching, sequencing and picker routing problems in manual order picking systems. J. King Saud Univ. Eng. Sci. 32(3), 219–228 (2020)

    Google Scholar 

  4. Chew, E.P., Tang, L.C.: Travel time analysis for general item location assignment in a rectangular warehouse. Eur. J. Oper. Res. 112(3), 582–597 (1999)

    Article  MATH  Google Scholar 

  5. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)

    Article  Google Scholar 

  6. Gibson, D.R., Sharp, G.P.: Order batching procedures. Eur. J. Oper. Res. 58(1), 57–67 (1992)

    Article  Google Scholar 

  7. Gil-Borrás, S., Pardo, E.G., Alonso-Ayuso, A., Duarte, A.: New VNS variants for the online order batching problem. In: Sifaleras, A., Salhi, S., Brimberg, J. (eds.) Variable Neighborhood Search. ICVNS 2018. Lecture Notes in Computer Science, vol. 11328, pp. 89–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15843-9_8

  8. Gil-Borrás, S., Pardo, E.G., Alonso-Ayuso, A., Duarte, A.: Basic VNS for a variant of the online order batching problem. In: Benmansour, R., Sifaleras, A., Mladenović, N. (eds.) Variable Neighborhood Search. ICVNS 2019. Lecture Notes in Computer Science, vol. 12010, pp. 17–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44932-2_2

  9. Gil-Borrás, S., Pardo, E.G., Alonso-Ayuso, A., Duarte, A.: Grasp with variable neighborhood descent for the online order batching problem. J. Global Optim. (2020). https://doi.org/10.1007/s10898-020-00910-2

    Article  MathSciNet  Google Scholar 

  10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)

    Book  MATH  Google Scholar 

  11. Henn, S.: Algorithms for on-line order batching in an order picking warehouse. Comput. Oper. Res. 39(11), 2549–2563 (2012)

    Article  MATH  Google Scholar 

  12. Henn, S.: Variable neighborhood search for the order batching and sequencing problem with multiple pickers. Technical report, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management (2012)

  13. Henn, S.: Order batching and sequencing for the minimization of the total tardiness in picker-to-part warehouses. Flex. Serv. Manuf. J. 27(1), 86–114 (2015)

    Article  Google Scholar 

  14. Henn, S., Koch, S., Doerner, K.F., Strauss, C., Wäscher, G.: Metaheuristics for the order batching problem in manual order picking systems. Bus. Res. 3(1), 82–105 (2010)

    Article  Google Scholar 

  15. Henn, S., Schmid, V.: Metaheuristics for order batching and sequencing in manual order picking systems. Comput. Ind. Eng. 66(2), 338–351 (2013)

    Article  Google Scholar 

  16. Henn, S., Wäscher, G.: Tabu search heuristics for the order batching problem in manual order picking systems. Eur. J. Oper. Res. 222(3), 484–494 (2012)

    Article  MATH  Google Scholar 

  17. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, vol. 2. Springer, Berlin (2001)

    MATH  Google Scholar 

  18. López-Ibáñez, M., Stützle, T., Dorigo, M.: Ant colony optimization: a component-wise overview. In: Martí, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 371–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-07153-4_21-1

  19. Menéndez, B., Bustillo, M., Pardo, E.G., Duarte, A.: General variable neighborhood search for the order batching and sequencing problem. Eur. J. Oper. Res. 263(1), 82–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Menéndez, B., Pardo, E.G., Alonso-Ayuso, A., Molina, E., Duarte, A.: Variable neighborhood search strategies for the order batching problem. Comput. Oper. Res. 78, 500–512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Menéndez, B., Pardo, E.G., Duarte, A., Alonso-Ayuso, A., Molina, E.: General variable neighborhood search applied to the picking process in a warehouse. Electron. Notes Discrete Math. 47, 77–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Menéndez, B., Pardo, E.G., Sánchez-Oro, J., Duarte, A.: Parallel variable neighborhood search for the min–max order batching problem. Int. Trans. Oper. Res. 24(3), 635–662 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Öncan, T.: MILP formulations and an iterated local search algorithm with Tabu thresholding for the order batching problem. Eur. J. Oper. Res. 243(1), 142–155 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Öncan, T., Cağırıcı, M.: MILP formulations for the order batching problem in low-level picker-to-part warehouse systems. IFAC Proc. Vol. 46(9), 471–476 (2013)

    Article  Google Scholar 

  26. Pérez-Rodríguez, R., Hernández-Aguirre, A., Jöns, S.: A continuous estimation of distribution algorithm for the online order-batching problem. Int. J. Adv. Manuf. Technol. 79(1), 569–588 (2015)

    Article  Google Scholar 

  27. Petersen, C.G.: An evaluation of order picking routeing policies. Int. J. Oper. Prod. Manag. 17(11), 1098–1111 (1997)

    Article  Google Scholar 

  28. Quinn, E.B.: Simulation of order processing waves. Mater. Handling Focus 83, 5 (1983)

    Google Scholar 

  29. Roodbergen, K.J., Koster, R.D.: Routing methods for warehouses with multiple cross aisles. Int. J. Prod. Res. 39(9), 1865–1883 (2001)

    Article  MATH  Google Scholar 

  30. Rubrico, J.I.U., Higashi, T., Tamura, H., Ota, J.: Online rescheduling of multiple picking agents for warehouse management. Robot. Comput. Integr. Manuf. 27(1), 62–71 (2011)

    Article  Google Scholar 

  31. Scholz, A., Schubert, D., Wäscher, G.: Order picking with multiple pickers and due dates-simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems. Eur. J. Oper. Res. 263(2), 461–478 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stützle, T., Ruiz, R.: Iterated local search. In: Martí, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 579–605. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-07153-4_8-1

  33. Tang, L.C., Chew, E.P.: Order picking systems: batching and storage assignment strategies. Comput. Ind. Eng. 33(3), 817–820 (1997). Selected Papers from the Proceedings of 1996 ICC&IC

    Article  Google Scholar 

  34. Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A.: Facilities Planning. Wiley, Chichester (2010)

    Google Scholar 

  35. Valle, C.A., Beasley, J.E., da Cunha, A.S.: Optimally solving the joint order batching and picker routing problem. Eur. J. Oper. Res. 262(3), 817–834 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Nieuwenhuyse, I., de Koster, R.B.M.: Evaluating order throughput time in 2-block warehouses with time window batching. Int. J. Prod. Econ. 121(2), 654–664 (2009)

    Article  Google Scholar 

  37. von Bortkiewicz, L.: Das Gesetz der kleinen Zahlen. B.G. Teubner, Berlin (1898)

    Google Scholar 

  38. Whittley, I.M., Smith, G.D.: The attribute based hill climber. J. Math. Model. Algorithms 3(2), 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yokota, T.: Min-max-strategy-based optimum co-operative picking with AGVS in warehouse. In: 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 236–242. IEEE (2019)

  40. Yu, M., De Koster, R.B.M.: The impact of order batching and picking area zoning on order picking system performance. Eur. J. Oper. Res. 198(2), 480–490 (2009)

    Article  MATH  Google Scholar 

  41. Zhang, J., Wang, X., Chan, F.T.S., Ruan, J.: On-line order batching and sequencing problem with multiple pickers: a hybrid rule-based algorithm. Appl. Math. Model. 45(Supplement C), 271–284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo G. Pardo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially funded by the projects: RTI2018-094269-B-I00 and PGC2018-095322-B-C22 from Ministerio de Ciencia, Innovación y Universidades (Spain); by Comunidad de Madrid and European Regional Development Fund, Grant Ref. P2018/TCS-4566; and by Programa Propio de I+D+i de la Universidad Politécnica de Madrid (Programa 466A).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Borrás, S., Pardo, E.G., Alonso-Ayuso, A. et al. Fixed versus variable time window warehousing strategies in real time. Prog Artif Intell 9, 315–324 (2020). https://doi.org/10.1007/s13748-020-00215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-020-00215-1

Keywords

Navigation