Progress in Artificial Intelligence

, Volume 7, Issue 1, pp 1–14 | Cite as

A pixel processing approach for retinal vessel extraction using modified Gabor functions

  • Sameena Pathan
  • P. C. Siddalingaswamy
  • K. Gopalakrishna Prabhu
Regular Paper


Computerized image analysis methods for retinal imaging are primarily of great interest and benefit as it provides significant information about the retinal vessels. Retinal image analysis techniques can be of pertinence for ophthalmologists and a stand-alone warning implement for determining the retinal disorders. This requires dedicated image processing algorithms to provide mathematical description about the region of interest. This paper presents an automated pixel processing-based retinal vessel extraction algorithm using modified Gabor functions and morphological operators. Color normalization is performed to make the algorithm adaptable to intra- and inter-image variabilities. Furthermore, the enhanced retinal vessels are subjected to automatic thresholding for vessel pixel classification. The proposed method is tested on a set of retinal images collected from the DRIVE database and subjected to robust performance analysis to evaluate the efficacy. The proposed algorithm achieved an average accuracy of 97.22%, sensitivity of 85.12% and specificity of 98.57%, which is comparably preferable to the well-known algorithms.


Gabor filter GLCM Morphology Optic disk Vessel extraction 



The authors express their gratitude to Prof. Tanweer, REVA University Bangalore, for his extensive support and contribution in carrying out this research. This work was supported by Manipal University Dr. T.M.A. Pai Research Scholarship under Research Registration No. 160900105-2016.


  1. 1.
    WHO Global Report on Diabetes.
  2. 2.
    Moghimirad, E., Rezatofighi, S.H., Soltanian-Zadeh, H.: Multi-scale approach for retinal vessel segmentation using medialness function. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 29–32 (2010)Google Scholar
  3. 3.
    Zhao, Y.Q., Wang, X.H., Wang, X.F., Shih, F.Y.: Retinal vessels segmentation based on level set and region growing. Pattern Recognit. 47(7), 2437–2446 (2014)CrossRefGoogle Scholar
  4. 4.
    Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  5. 5.
    Sofka, M., Stewart, C.V.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imaging 25(12), 1531–1546 (2006)CrossRefGoogle Scholar
  6. 6.
    Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., Angelopoulou, E.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Proc. 7(4), 373–383 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J., Duits, R., ter Haar Romeny, B.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35(12), 2631–2644 (2016)CrossRefGoogle Scholar
  8. 8.
    Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34(3), 213–227 (2010)CrossRefGoogle Scholar
  9. 9.
    Yin, Y., Adel, M., Bourennane, S.: Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognit. 45(4), 1235–1244 (2012)CrossRefMATHGoogle Scholar
  10. 10.
    De, J., Ma, T., Li, H., Dash, M., Li, C.: Automated tracing of retinal blood vessels using graphical models. In: Scandinavian Conference on Image Analysis. Springer, Berlin (2013)Google Scholar
  11. 11.
    Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W., Tan, N.M., Tao, D., Cheng, C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)CrossRefGoogle Scholar
  12. 12.
    Aquino, A., Gegundez-Arias, M.E., Marin, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29(11), 1860–1869 (2010)CrossRefGoogle Scholar
  13. 13.
    Morales, S., Naranjo, V., Angulo, J., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–96 (2013)CrossRefGoogle Scholar
  14. 14.
    Alshayeji, M., Al-Roomi, S.A., Abed, S.E.: Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med. Biol. Eng. Comput. 55(6), 935–948 (2016)CrossRefGoogle Scholar
  15. 15.
    Pereira, C., Gonçalves, L., Ferreira, M.: Optic disc detection in color fundus images using ant colony optimization. Med. Biol. Eng. Comput. 51(3), 295–303 (2013)CrossRefGoogle Scholar
  16. 16.
    DRIVE: Result Browser. Accessed 3 Jan 2017
  17. 17.
    Gabor, D.: Theory of communication. Part 1: the analysis of information electrical engineers—part III. J. Inst. Radio Commun. Eng. 93(26), 429–41 (1946)Google Scholar
  18. 18.
    Liu, Z.Q., Cai, J., Buse, R.: Hand-Writing Recognition: Soft Computing and Probablistic Approaches. Springer, Berlin (2003)CrossRefGoogle Scholar
  19. 19.
    Gonzalez, R.C., Woods, R.E.: Digital image processing (2008)Google Scholar
  20. 20.
    Jain, A.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1986)MATHGoogle Scholar
  21. 21.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)CrossRefGoogle Scholar
  22. 22.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  23. 23.
    Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–58 (2011)CrossRefGoogle Scholar
  24. 24.
    Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)CrossRefGoogle Scholar
  25. 25.
    Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40(4), 438–45 (2010)CrossRefGoogle Scholar
  26. 26.
    Shahbeig, S.: Automatic and quick blood vessels extraction algorithm in retinal images. IET Image Proc. 7(4), 392–400 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Salazar-Gonzalez, A., Kaba, D., Li, Y., Liu, X.: Segmentation of the blood vessels and optic disk in retinal images. IEEE J. Biomed. Health Inform. 18(6), 1874–1886 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhu, C., Zou, B., Xiang, Y., Cui, J., Wu, H.: An ensemble retinal vessel segmentation based on supervised learning in fundus images. Chin. J. Electron. 25(3), 503–511 (2016)CrossRefGoogle Scholar
  29. 29.
    Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and sub image classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)Google Scholar
  30. 30.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)CrossRefGoogle Scholar
  31. 31.
    Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)CrossRefGoogle Scholar
  32. 32.
    Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)CrossRefMATHGoogle Scholar
  33. 33.
    Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhang, J., Chen, Y., Bekkers, E., Wang, M., Dashtbozorg, B., Haar Romeny, B.M.: Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recognit. 69, 107–123 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sameena Pathan
    • 1
  • P. C. Siddalingaswamy
    • 1
  • K. Gopalakrishna Prabhu
    • 2
  1. 1.Department of Computer Science and EngineeringManipal Institute of Technology, Manipal UniversityManipalIndia
  2. 2.Department of Biomedical EngineeringManipal Institute of Technology, Manipal UniversityManipalIndia

Personalised recommendations