Advertisement

Progress in Artificial Intelligence

, Volume 7, Issue 1, pp 15–29 | Cite as

An adapted incremental graded multi-label classification model for recommendation systems

  • Khalil Laghmari
  • Christophe Marsala
  • Mohammed Ramdani
Regular Paper
  • 98 Downloads

Abstract

Graded multi-label classification (GMLC) is the task of assigning to each data a set of relevant labels with corresponding membership grades. This paper is interested in GMLC for large and evolving datasets where data are collected from a possibly infinite stream. Many commercial and non-commercial websites acquire such data by giving users the opportunity to rank items any time using an ordinal scale like one-to-five star rating. Typically these collected data are sparse because users rank only a small subset of items. Websites rely on recommender systems to dynamically adapt the recommended item set for each user. Hence, the applied recommender system should remain scalable and efficient when dealing with sparse data. State-of-the-art methods related to GMLC were tested only in batch mode. Their performance in an incremental mode is not investigated, especially in presence of sparse data and concept drifts. This paper presents our proposed incremental GMLC method which answers the above challenges and can be applied to build a recommender system. This method is tested on the well-known MovieLens and Jester datasets, and it is able to adapt to concept drifts and maintain the Hamming loss at a low level.

Keywords

Graded multi-label classification Recommender system Sparse data Incremental mode Concept drift 

Notes

Acknowledgements

This work has been partially funded by the Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres (MESRSFC) of Morocco and the French Institute of the French Embassy in Morocco.

References

  1. 1.
    Aggarwal, C.C.: A survey of stream classification algorithms. In: Aggarwal, C.C. (ed.) Data Classification: Algorithms and Applications, pp. 245–274. CRC Press, Boca Raton (2014)Google Scholar
  2. 2.
    Agrawal, S., Agrawal, J., Kaur, S., Sharma, S.: A comparative study of fuzzy PSO and fuzzy SVD-based RBF neural network for multi-label classification. Neural Comput. Appl. 1–12 (2016). doi: 10.1007/s00521-016-2446-x
  3. 3.
    Amanda, C., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD ’01, pp. 42–53. Springer, London (2001)Google Scholar
  4. 4.
    Bifet, A., Gavaldă, R.: Learning from time-changing data with adaptive windowing. In: SDM, pp. 443–448. SIAM (2007)Google Scholar
  5. 5.
    Bobadilla, J., Ortega, F., Hernando, A., GutiéRrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  6. 6.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Brinker, C., Mencía, E.L., Fürnkranz, J.: Graded multilabel classification by pairwise comparisons. In: 2014 IEEE International Conference on Data Mining, pp. 731–736 (2014)Google Scholar
  8. 8.
    Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: the data replication method. J. Mach. Learn. Res. 8, 1393–1429 (2007)MathSciNetMATHGoogle Scholar
  9. 9.
    Chen, C.L., Chang, C.H.: Evaluation of session-based recommendation systems for social networks. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 758–765 (2013)Google Scholar
  10. 10.
    Cheng, W., Dembczynski, K., Hüllermeier, E.: Graded multilabel classification: the ordinal case. In: ICML, pp. 223–230 (2010)Google Scholar
  11. 11.
    Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283 (1989)Google Scholar
  12. 12.
    Cohen, E., Strauss, M.J.: Maintaining time-decaying stream aggregates. J. Algorithms 59(1), 19–36 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)MathSciNetMATHGoogle Scholar
  14. 14.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’00, pp. 71–80. ACM, New York (2000)Google Scholar
  15. 15.
    Eibe, F., Mark, H.: A simple approach to ordinal classification. In: Proceedings of the 12th European Conference on Machine Learning, EMCL ’01, pp. 145–156. Springer, London (2001)Google Scholar
  16. 16.
    Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems. Found. Trends Hum. Comput. Interact. 4(2), 81–173 (2011)CrossRefGoogle Scholar
  17. 17.
    Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Cohen W.W., Hirsh H. (eds.) Proceedings of the 11th International Conference on Machine Learning (ML-94), pp. 70–77. Morgan Kaufmann, New Brunswick (1994)Google Scholar
  18. 18.
    Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: A Survey of Classification Methods in Data Streams. Springer, Boston (2007)CrossRefMATHGoogle Scholar
  19. 19.
    Gama, J.A., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 329–338. ACM, New York (2009)Google Scholar
  20. 20.
    Gama, Ja, Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W.Y.: Boat—optimistic decision tree construction. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD ’99, pp. 169–180. ACM, New York (1999)Google Scholar
  22. 22.
    Gibaja, E., Ventura, S.: Multi-label learning: a review of the state of the art and ongoing research. Wiley Interdiscip. Rev. Data Min. Knowl. Disc. 4(6), 411–444 (2014)CrossRefGoogle Scholar
  23. 23.
    Gibaja, E., Ventura, S.: A tutorial on multilabel learning. ACM Comput. Surv. 47(3), 1–38 (2015)CrossRefGoogle Scholar
  24. 24.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retr. 4(2), 133–151 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Haque, A., Khan, L., Baron, M., Thuraisingham, B., Aggarwal, C.: Efficient handling of concept drift and concept evolution over stream data. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 481–492 (2016)Google Scholar
  26. 26.
    Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)CrossRefGoogle Scholar
  27. 27.
    Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J.: Multilabel classification. Multilabel Classification Problem Analysis, Metrics and Techniques, pp. 17–31. Springer International Publishing, Switzerland (2016)Google Scholar
  28. 28.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, pp. 97–106. ACM, New York (2001)Google Scholar
  30. 30.
    Jiang, X., Niu, Z., Guo, J., Mustafa, G., Lin, Z., Chen, B., Zhou, Q.: Novel boosting frameworks to improve the performance of collaborative filtering. In: Ong C.S., Ho T.B. (eds.) Proceedings of the 5th Asian Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 29, pp. 87–99. PMLR, Australian National University, Canberra (2013)Google Scholar
  31. 31.
    Kim, S., Kim, H., Namkoong, Y.: Ordinal classification of imbalanced data with application in emergency and disaster information services. IEEE Intell. Syst. 31(5), 50–56 (2016)CrossRefGoogle Scholar
  32. 32.
    Laghmari, K., Marsala, C., Ramdani, M.: Graded multi-label classification: compromise between handling label relations and limiting error propagation. In: 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA), pp. 1–6 (2016)Google Scholar
  33. 33.
    Laghmari, K., Marsala, C., Ramdani, M.: Classification multi-labels graduée: Apprendre les relations entre les labels ou limiter la propagation d’erreur ? Revue des Nouvelles Technologies de l Information, Extraction et Gestion des Connaissances, RNTI-E-33, pp. 381–386 (2017)Google Scholar
  34. 34.
    Lastra, G., Luaces, O., Bahamonde, A.: Interval prediction for graded multi-label classification. Pattern Recognit. Lett. 49, 171–176 (2014)CrossRefGoogle Scholar
  35. 35.
    Liu, C., Cao, L.: A Coupled k-Nearest Neighbor Algorithm for Multi-label Classification, pp. 176–187. Springer, Cham (2015)Google Scholar
  36. 36.
    Loeffel, P., Marsala, C., Detyniecki, M.: Classification with a reject option under concept drift: the droplets algorithm. In: 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Paris, 19–21 Oct 2015, pp. 1–9. IEEE (2015)Google Scholar
  37. 37.
    Loeffel, P.X., Marsala, C., Detyniecki, M.: Memory management for data streams subject to concept drift. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 387–392 (2016)Google Scholar
  38. 38.
    Loza Mencía, E., Janssen, F.: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1), 77–126 (2016)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Marsala, C.: Incremental tuning of fuzzy decision trees. In: Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), 2012 Joint 6th International Conference on, pp. 2061–2064 (2012)Google Scholar
  40. 40.
    Mehta, M., Agrawal, R., Rissanen, J.: Sliq: A fast scalable classifier for data mining. In: Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology, EDBT ’96, pp. 18–32. Springer, London (1996)Google Scholar
  41. 41.
    Nguyen, H.L., Woon, Y.K., Ng, W.K.: A survey on data stream clustering and classification. Knowl. Inf. Syst. 45(3), 535–569 (2015)CrossRefGoogle Scholar
  42. 42.
    Pan, R., Yang, T., Cao, J., Lu, K., Zhang, Z.: Missing data imputation by k nearest neighbours based on grey relational structure and mutual information. Appl. Intell. 43(3), 614–632 (2015)CrossRefGoogle Scholar
  43. 43.
    Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5), 393–408 (1999)CrossRefGoogle Scholar
  44. 44.
    Qiao, X.: Learning ordinal data. Wiley Interdiscip. Rev. Comput. Stat. 7(5), 341–346 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Qu, W., Zhang, Y., Zhu, J., Qiu, Q.: Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble. Springer, Berlin, Heidelberg (2009)CrossRefGoogle Scholar
  46. 46.
    Quinlan, J.: Learning efficient classification procedures and their application to chess end games. In: Mitchell, R.S.M.G.C.M. (ed.) Machine Learning, pp. 463–482. Morgan Kaufmann, San Francisco (1983)Google Scholar
  47. 47.
    Quinlan, J.: The minimum description length principle and categorical theories. In: Hirsh, W.W.C. (ed.) Machine Learning Proceedings 1994, pp. 233–241. Morgan Kaufmann, San Francisco (1994)Google Scholar
  48. 48.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn 1, 81–106 (1986)Google Scholar
  49. 49.
    Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Scalable and efficient multi-label classification for evolving data streams. Mach. Learn. 88(1), 243–272 (2012)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Read, J., Martino, L., Olmos, P.M., Luengo, D.: Scalable multi-output label prediction: from classifier chains to classifier trellises. Pattern Recognit. 48(6), 2096–2109 (2015)CrossRefMATHGoogle Scholar
  51. 51.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)Google Scholar
  52. 52.
    Salperwyck, C., Lemaire, V.: Incremental decision tree based on order statistics. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2013)Google Scholar
  53. 53.
    Schlimmer, J.C., Fisher, D.: A case study of incremental concept induction. In: Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 496–501 (1986)Google Scholar
  54. 54.
    Shafer, J.C., Agrawal, R., Mehta, M.: Sprint: A scalable parallel classifier for data mining. In: Proceedings of the 22th International Conference on Very Large Data Bases, VLDB ’96, pp. 544–555. Morgan Kaufmann Publishers Inc., San Francisco (1996)Google Scholar
  55. 55.
    Sun, Z., Guo, Z., Jiang, M., Wang, X., Liu, C.: Research and Application of Fast Multi-label SVM Classification Algorithm Using Approximate Extreme Points. Springer, Cham (2016)CrossRefGoogle Scholar
  56. 56.
    Utgoff, P.E.: Id5: an incremental id3. In: Laird, J.E. (ed.) ML, pp. 107–120. Morgan Kaufmann, San Francisco (1988)Google Scholar
  57. 57.
    Utgoff, P.E.: Incremental induction of decision trees. Mach. Learn. 4(2), 161–186 (1989)CrossRefGoogle Scholar
  58. 58.
    Utgoff, P.E.: An improved algorithm for incremental induction of decision trees. In: In Proceedings of the Eleventh International Conference on Machine Learning, pp. 318–325. Morgan Kaufmann (1994)Google Scholar
  59. 59.
    Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 226–235. ACM, New York (2003)Google Scholar
  60. 60.
    Wang, X., An, S., Shi, H., Hu, Q.: Fuzzy Rough Decision Trees for Multi-label Classification. Springer, Cham (2015)CrossRefGoogle Scholar
  61. 61.
    Wu, Q., Tan, M., Song, H., Chen, J., Ng, M.K.: Ml-forest: a multi-label tree ensemble method for multi-label classification. IEEE Trans. Knowl. Data Eng. 28(10), 2665–2680 (2016)CrossRefGoogle Scholar
  62. 62.
    Xie, W., Ouyang, Y., Ouyang, J., Rong, W., Xiong, Z.: User occupation aware conditional restricted boltzmann machine based recommendation. In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 454–461 (2016)Google Scholar
  63. 63.
    Xioufis, E.S., Spiliopoulou, M., Tsoumakas, G., Vlahavas, I.: Dealing with concept drift and class imbalance in multi-label stream classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, Vol. Volume Two, pp. 1583–1588. AAAI Press (2011)Google Scholar
  64. 64.
    Yang, X., Guo, Y., Liu, Y., Steck, H.: A survey of collaborative filtering based social recommender systems. Comput. Commun. 41, 1–10 (2014)CrossRefGoogle Scholar
  65. 65.
    Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefMATHGoogle Scholar
  66. 66.
    Zaier, Z., Godin, R., Faucher, L.: Evaluating recommender systems. In: 2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution, pp. 211–217 (2008)Google Scholar
  67. 67.
    Zaier, Z., Godin, R., Faucher, L.: Recommendation quality evolution based on neighbors discrimination. In: 2008 International MCETECH Conference on e-Technologies (mcetech 2008), pp. 148–153 (2008)Google Scholar
  68. 68.
    Žliobaitė, I., Pechenizkiy, M., Gama, J.: An Overview of Concept Drift Applications. Springer, Cham (2016)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Khalil Laghmari
    • 1
    • 2
  • Christophe Marsala
    • 2
  • Mohammed Ramdani
    • 1
  1. 1.Laboratoire Informatique de MohammediaFSTM Hassan II University of CasablancaMohammediaMorocco
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606ParisFrance

Personalised recommendations