Advertisement

Progress in Artificial Intelligence

, Volume 7, Issue 1, pp 31–40 | Cite as

Scatter search for the bi-criteria p-median p-dispersion problem

  • J. Manuel Colmenar
  • Arild Hoff
  • Rafael Martí
  • Abraham Duarte
Regular Paper

Abstract

The bi-criteria p-median p-dispersion is a challenging optimization problem that belongs to the family of location problems. To our knowledge, no metaheuristic has been proposed to this problem, where a multi-objective approach has to be considered. In this paper, we propose a multi-objective Scatter Search implementation in which three different improvement methods have been analyzed. Our results have been compared with the state of the art obtaining better hypervolume values and promising results in terms of dominance of solutions.

Keywords

Facility problems p-Median p-Dispersion Scatter Search 

Notes

Acknowledgements

This research has been partially supported by the Ministerio de Economa y Competitividad of Spain (Grant Refs. TIN2015-65460-C2 and TIN2014-54806-R). The authors want to thank Emilio Alarcón for his seminal work on this problem, which triggered their interest.

References

  1. 1.
    Brub, J.F., Gendreau, M., Potvin, J.Y.: An exact-constraint method for bi-objective combinatorial optimization problems: application to the traveling salesman problem with profits. Eur. J. Oper. Res. 194(1), 39–50 (2009). doi: 10.1016/j.ejor.2007.12.014. http://www.sciencedirect.com/science/article/pii/S0377221707012106
  2. 2.
    Daskin, M.S., Maass, K.L.: The p-Median Problem, pp. 21–45. Springer, Berlin. doi: 10.1007/978-3-319-13111-5_2 (2015)
  3. 3.
    Erkut, E.: The discrete p-dispersion problem. Eur. J. Oper. Res. 46(1), 48–60 (1990). doi: 10.1016/0377-2217(90)90297-O MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gallego, M., Duarte, A., Laguna, M., Martí, R.: Hybrid heuristics for the maximum diversity problem. Comput. Optim. Appl. 44(3), 411 (2007). doi: 10.1007/s10589-007-9161-6 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ghosh, J.B.: Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19(4), 175–181 (1996). doi: 10.1016/0167-6377(96)00025-9 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Glover, F.: Heuristics for Integer Programming Using Surrogate Constraints. Report. Business Research Division, University of Colorado (1974)Google Scholar
  7. 7.
    Kincaid, R.K.: Good solutions to discrete noxious location problems via metaheuristics. Ann. Oper. Res. 40(1), 265–281 (1992). doi: 10.1007/BF02060482 CrossRefMATHGoogle Scholar
  8. 8.
    Laguna, M., Marti, R.: Scatter Search: Methodology and Implementations in C. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Laporte, G., Nickel, S., da Gama, F.S.: Location Science. Springer, Berlin (2015)CrossRefMATHGoogle Scholar
  10. 10.
    Mladenovic, N., Brimberg, J., Hansen, P., Moreno-Perez J.A.: The p-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007). doi: 10.1016/j.ejor.2005.05.034. http://www.sciencedirect.com/science/article/pii/S0377221706000750
  11. 11.
    Pisinger, D.: Upper bounds and exact algorithms for -dispersion problems. Comput. Oper. Res. 33(5), 1380–1398 (2006). doi: 10.1016/j.cor.2004.09.033. http://www.sciencedirect.com/science/article/pii/S0305054804002552
  12. 12.
    Porumbel, D.C., Hao, J.K., Glover, F.: A simple and effective algorithm for the maxmin diversity problem. Ann. Oper. Res. 186(1), 275 (2011)CrossRefMATHGoogle Scholar
  13. 13.
    Resende, M., Marti, R., Gallego, M., Duarte, A.: GRASP and path relinking for the maxmin diversity problem. Comput. Oper. Res. 37(3), 498–508 (2010). doi: 10.1016/j.cor.2008.05.011. http://www.sciencedirect.com/science/article/pii/S0305054808001032 (hybrid metaheuristics)
  14. 14.
    Sandoya, F., Martínez-Gavara, A., Aceves, R., Duarte, A., Martí, R.: Diversity and Equity Models. In: Martí, R., Pardalos, P., Resende, M.G.C. Handbook of Heuristics. Springer, Berlin (2015)Google Scholar
  15. 15.
    Sayyady, F., Tutunchi, G.K., Fathi, Y.: p-median and p-dispersion problems: a bi-criteria analysis. Comput. Oper. Res. 61, 46–55 (2015). doi: 10.1016/j.cor.2015.02.007. http://www.sciencedirect.com/science/article/pii/S0305054815000386
  16. 16.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, PPSN V, pp. 292–304. Springer, London. http://dl.acm.org/citation.cfm?id=645824.668610 (1998)

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universidad Rey Juan CarlosMóstolesSpain
  2. 2.Molde University CollegeMoldeNorway
  3. 3.Universidad de ValenciaBurjassot, ValenciaSpain

Personalised recommendations