Progress in Artificial Intelligence

, Volume 6, Issue 4, pp 275–284 | Cite as

Using simheuristics to promote horizontal collaboration in stochastic city logistics

  • Carlos L. Quintero-Araujo
  • Aljoscha Gruler
  • Angel A. Juan
  • Jesica de Armas
  • Helena Ramalhinho
Regular Paper
  • 117 Downloads

Abstract

This paper analyzes the role of horizontal collaboration (HC) concepts in urban freight transportation under uncertainty scenarios. The paper employs different stochastic variants of the well-known vehicle routing problem (VRP) in order to contrast a non-collaborative scenario with a collaborative one. This comparison allows us to illustrate the benefits of using HC strategies in realistic urban environments characterized by uncertainty in factors such as customers’ demands or traveling times. In order to deal with these stochastic variants of the VRP, a simheuristic algorithm is proposed. Our approach integrates Monte Carlo simulation inside a metaheuristic framework. Some computational experiments contribute to quantify the potential gains that can be obtained by the use of HC practices in modern city logistics.

Keywords

City logistics Horizontal collaboration Stochastic optimization Vehicle routing problems Simheuristics 

Notes

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P and TRA2015-71883-REDT), and FEDER. Likewise, we want to acknowledge the support received by the Department of Universities, Research & Information Society of the Catalan Government (2014-CTP-00001), the Special Patrimonial Fund from Universidad de La Sabana and the doctoral grant of the UOC.

References

  1. 1.
    Bahinipati, B., Kanada, A., Deshmukh, S.: Horizontal collaboration in semiconductor manufacturing industry supply chain: an evaluation of collaboration intensity index. Comput. Ind. Eng. 57, 880–895 (2009)CrossRefGoogle Scholar
  2. 2.
    Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers. Comput. Optim. Appl. 61(2), 463–487 (2015)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ballot, E., Fontane, F.: Reducing transportation co2 emissions through pooling of supply networks: perspectives from a case study in french retail chains. Prod. Plan. Control 21(6), 640–650 (2010)CrossRefGoogle Scholar
  4. 4.
    Bertsimas, D.: A vehicle routing problem with stochastic demand. Oper. Res. 40(3), 574–585 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Buijs, P., Alejandro, J., Alvarez, L., Veenstra, M., Roodbergen, K.J.: Improved collaborative transport planning at Dutch logistics service provider fritom. Interfaces 46(2), 119–132 (2016)CrossRefGoogle Scholar
  7. 7.
    Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle routing problem:survey. ACM Comput. Surv. 47(2), 32:1–32:28 (2014)CrossRefGoogle Scholar
  8. 8.
    Calvet, L., Ferrer, A., Gomes, M.I., Juan, A.A., Masip, D.: Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation. Comput. Ind. Eng. 94, 93–104 (2016)CrossRefGoogle Scholar
  9. 9.
    Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks 30, 105–119 (1997)CrossRefMATHGoogle Scholar
  10. 10.
    De Oliveira, F.B., Enayatifar, R., Sadaei, H.J., Guimarães, F.G., Potvin, J.Y.: A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem. Expert Syst. Appl. 43, 117–130 (2016)CrossRefGoogle Scholar
  11. 11.
    Defryn, C., Sörensen, K., Cornelissens, T.: The selective vehicle routing problem in a collaborative environment. Eur. J. Oper. Res. 250(2), 400–411 (2016)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Ehmke, J.F.: Integration of Information and Optimization Models for Routing in City Logistics. Springer, Berlin (2012)CrossRefGoogle Scholar
  13. 13.
    European Commission: Cities of tomorrow: Challenges, visions, ways forward (2011). http://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/citiesoftomorrow/citiesoftomorrow_final.pdf. Accessed 21 Mar 2017
  14. 14.
    European Environment Agency: Eea draws the first map of europe’s noise exposure (2009). http://www.eea.europa.eu/media/newsreleases/eea-draws-the-first-map-of-europe2019s-noise-exposure
  15. 15.
    Faulin, J., Juan, A., Lera, F., Grasman, S.: Solving the capacitated vehicle routing problem with environmental criteria based on real estimations in road transportation: A case study. Proced. Soc. Behav. Sci. 20, 323–334 (2011)CrossRefGoogle Scholar
  16. 16.
    Faure, L., Battaia, G., Marquès, G., Guillaume, R., Vega-Mejía, C.A., Montova-Torres, J.R., Muñoz-Villamizar, A., Quintero-Araújo, C.L.: How to anticipate the level of activity of a sustainable collaborative network: The case of urban freight delivery through logistics platforms. In: IEEE International Conference on Digital Ecosystems and Technologies, pp. 126–131 (2013)Google Scholar
  17. 17.
    Fikar, C., Juan, A., Martinez, E., Hirsch, P.: A discrete-event metaheuristic for dynamic home-service routing with synchronized ride-sharing. Eur. J. Ind. Eng. 10(3), 323–340 (2016)CrossRefGoogle Scholar
  18. 18.
    Gonzalez-Feliu, J., Semet, F., Routhier, J.: Sustainable Urban Logistics: Concepts, Methods and Information Systems. Springer, Berlin, Heidelberg (2014)Google Scholar
  19. 19.
    Gonzalez-Martin, S., Juan, A.A., Riera, D., Elizondo, M.G., Ramos, J.J.: A simheuristic algorithm for solving the arc-routing problem with stochastic demands. J. Simul. (2016). doi:10.1057/jos.2016.11
  20. 20.
    Grasas, A., Juan, A.A., Lourenço, H.R.: Simils: a simulation-based extension of the iterated local search metaheuristic for stochastic combinatorial optimization. J. Simul. 10(1), 69–77 (2016)CrossRefGoogle Scholar
  21. 21.
    Juan, A.A., Barrios, B.B., Vallada, E., Riera, D., Jorba, J.: A simheuristic algorithm for solving the permutation flow shop problem with stochastic processing times. Simul. Model. Pract. Theory 46, 101–117 (2014)CrossRefGoogle Scholar
  22. 22.
    Juan, A.A., Faulin, J., Ferrer, A., Lourenço, H.R., Barrios, B.: Mirha: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems. Top 21(1), 109–132 (2013)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Juan, A.A., Faulin, J., Grasman, S., Riera, D., Marull, J., Mendez, C.: Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transp. Res. Part C Emerg. Technol. 19(5), 751–765 (2011)CrossRefGoogle Scholar
  24. 24.
    Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2, 62–72 (2015)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Juan, A.A., Faulin, J., Jorba, J., Caceres, J., Marquès, J.M.: Using parallel & distributed computing for real-time solving of vehicle routing problems with stochastic demands. Ann. Oper. Res. 207(1), 43–65 (2013)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Juan, A.A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B.: On the use of monte carlo simulation, cache and splitting techniques to improve the clarke and wright savings heuristics. J. Oper. Res. Soc. 62(6), 1085–1097 (2011)CrossRefGoogle Scholar
  27. 27.
    Juan, A.A., Grasman, S.E., Caceres-Cruz, J., Bektaş, T.: A simheuristic algorithm for the single-period stochastic inventory-routing problem with stock-outs. Simul. Model. Pract. Theory 46, 40–52 (2014)CrossRefGoogle Scholar
  28. 28.
    Juan, A.A., Mendez, C.A., Faulin, J., de Armas, J., Grasman, S.E.: Electric vehicles in logistics and transportation: a survey on emerging environmental, strategic, and operational challenges. Energies 9(2), 86 (2016)CrossRefGoogle Scholar
  29. 29.
    Juan, A.A., Pascual, I., Guimarans, D., Barrios, B.: Combining biased randomization with iterated local search for solving the multidepot vehicle routing problem. Int. Trans. Oper. Res. 22(4), 647–667 (2015)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Karakatic, S., Podgorelec, V.: A survey of genetic algorithms for solving multi depot vehicle routing problem. Appl. Soft Comput. 27, 519–532 (2015)Google Scholar
  31. 31.
    Li, J., Pardalos, P.M., Sun, H., Pei, J., Zhang, Y.: Iterated local search embedded adaptive neighborhood selection approach for the multi-depot vehicle routing problem with simultaneous deliveries and pickups. Expert Syst. Appl. 42(7), 3551–3561 (2015)Google Scholar
  32. 32.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J. (eds.) Handbook of Metaheuristics, 2nd edn, pp. 363–397. Springer, New York (2010)CrossRefGoogle Scholar
  33. 33.
    Mancini, S.: A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet: formulation and adaptive large neighborhood search based matheuristic. Transp. Res. Part C Emerg. Technol. 70, 100–112 (2016)CrossRefGoogle Scholar
  34. 34.
    Montoya-Torres, J.R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., Herazo-Padilla, N.: A literature review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 79, 115–129 (2015)CrossRefGoogle Scholar
  35. 35.
    Muñoz-Villamizar, A., Montoya-Torres, J., Vega-Mejía, C.A.: Non-collaborative versus collaborative last-mile delivery in urban systems with stochastic demands. Proced. CIRP 30, 263–268 (2015)CrossRefGoogle Scholar
  36. 36.
    Pérez-Bernabeu, E., Juan, A.A., Faulin, J., Barrios, B.B.: Horizontal cooperation in road transportation: a case illustrating savings in distances and greenhouse gas emissions. Int. Trans. Oper. Res. 22(3), 585–606 (2015)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34, 2403–2435 (2007)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Pomponi, F., Fratocchi, L., Tafuri, S.R.: Trust development and horizontal collaboration in logistics: a theory based evolutionary framework. Supply Chain Manag. Int. J. 20(1), 83–97 (2015)CrossRefGoogle Scholar
  39. 39.
    Raychaudhuri, S.: Introduction to monte carlo simulation. In: Proceedings of the 2008 Winter Simulation Conference, pp. 91–100 (2008)Google Scholar
  40. 40.
    Ritzinger, U., Puchinger, J., Hartl, R.F.: A survey on dynamic and stochastic vehicle routing problems. Int. J. Prod. Res. 54(1), 215–231 (2016)CrossRefMATHGoogle Scholar
  41. 41.
    Toth, P., Vigo, D. (eds.): Vehicle Routing—Problems, Methods and Applications, 2nd edn. SIAM - Society for Industrial and Applied Mathematics, New Delhi (2014)MATHGoogle Scholar
  42. 42.
    Ubeda, S., Arcelus, F., Faulin, J.: Green logistics at eroski: a case study. Int. J. Prod. Econ. 131(1), 44–51 (2011)CrossRefGoogle Scholar
  43. 43.
    United States Environmental Protection Agency: Greenhouse gas emissions 1990–2013 (2013). http://www3.epa.gov/otaq/climate/documents/420f15032.pdf
  44. 44.
    Vidal, T., Crainic, T., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for multi-depot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Zuhori, S.T., Peya, Z.J., Mahmud, F.: A novel three-phase approach for solving multi-depot vehicle routing problem with stochastic demand. Algorithms Res. 1(4), 15–19 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Carlos L. Quintero-Araujo
    • 1
  • Aljoscha Gruler
    • 1
  • Angel A. Juan
    • 1
  • Jesica de Armas
    • 2
  • Helena Ramalhinho
    • 2
  1. 1.Open University of Catalonia - I N3BarcelonaSpain
  2. 2.Pompeu Fabra UniversityBarcelonaSpain

Personalised recommendations