Progress in Artificial Intelligence

, Volume 6, Issue 2, pp 181–194 | Cite as

AFRYCA 2.0: an improved analysis framework for consensus reaching processes

  • Álvaro Labella
  • Francisco J. Estrella
  • Luis Martínez
Regular Paper


Consensus reaching processes (CRPs) are increasingly important in the resolution of group decision-making (GDM) problems. There are many proposals of CRPs models with different characteristics, being difficult either to choose the most adequate for a given GDM problem or for making comparisons among them. For this reason, AFRYCA was proposed as a framework able to carry out comparison analyses and studies of CRPs in GDM problem resolution. This paper presents AFRYCA 2.0 which overcomes some limitations identified in the previous version. This new version incorporates new features for the analysis of CRPs, and increases its functionality, resulting a more powerful framework. Additionally, to show the usefulness and effectiveness of the new functionality of AFRYCA 2.0, an experimental study is carried out.


AFRYCA Group decision-making Consensus model Consensus reaching process 



This paper is partially funded by the research project TIN2015-66524-P.


  1. 1.
    Kacprzyk, J.: Group decision making with a fuzzy linguistic majority. Fuzzy Sets Syst. 18(2), 105–118 (1986)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Lu, J., Zhang, G., Ruan, D., Wu, F.: Multi-Objective Group Decision Making. Imperial College Press (2006)Google Scholar
  3. 3.
    Herrera, F., Herrera-Viedma, E., Verdegay, J.: A sequential selection process in group decision making with linguistic assessments. Inf. Sci. 85(4), 223–239 (1995)CrossRefMATHGoogle Scholar
  4. 4.
    Roubens, M.: Fuzzy sets and decision analysis. Fuzzy Sets Syst. 90(2), 199–206 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Saint, S., Lawson, J.R.: Rules for Reaching Consensus. A Modern Approach to Decision Making. Jossey-Bass (1994)Google Scholar
  6. 6.
    Herrera-Viedma, E., Cabrerizo, F., Kacprzyk, J., Pedrycz, W.: A review of soft consensus models in a fuzzy environment. Inf. Fusion 17, 4–13 (2014)CrossRefGoogle Scholar
  7. 7.
    Palomares, I., Estrella, F., Martínez, L., Herrera, F.: Consensus under a fuzzy context: Taxonomy, analysis framework AFRYCA and experimental case of study. Inf. Fusion 20(2014), 252–271 (2014)CrossRefGoogle Scholar
  8. 8.
    Orlovsky, S.: Decision-making with a fuzzy preference relation. Fuzzy Sets Syst. 1(3), 155–167 (1978)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Butler, C., Rothstein, A.: On Conflict and Consensus: A Handbook on Formal Consensus Decision Making. Food Not Bombs Publishing (2006)Google Scholar
  10. 10.
    Elzinga, C., Wang, H., Lin, Z., Kumar, Y.: Concordance and consensus. Inf. Sci. 181(12), 2529–2549 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Martínez, L., Montero, J.: Challenges for improving consensus reaching process in collective decisions. New Math. Nat. Comput. 3(2), 203–217 (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Bryson, N.: Group decision-making and the analytic hierarchy process. exploring the consensus-relevant information content. Comput. Oper. Res. 23(1), 27–35 (1996)CrossRefMATHGoogle Scholar
  13. 13.
    Carlsson, C., Ehrenberg, D., Eklund, P., Fedrizzi, M., Gustafsson, P., Lindholm, P., Merkuryeva, G., Riissanen, T., Ventre, A.: Consensus in distributed soft environments. Eur. J. Oper. Res. 61(1–2), 165–185 (1992)CrossRefGoogle Scholar
  14. 14.
    Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 32(3), 394–402 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Mata, F., Martínez, L., Herrera-Viedma, E.: An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Trans. Fuzzy Syst. 17(2), 279–290 (2009)CrossRefGoogle Scholar
  16. 16.
    Ben-Arieh, D., Chen, Z.: Linguistic labels aggregation and consensus measure for autocratic decision-making using group recommendations. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 36(1), 558–568 (2006)CrossRefGoogle Scholar
  17. 17.
    Wu, Z., Xu, J.: A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decis. Support Syst. 52(3), 757–767 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhang, G., Dong, Y., Xu, Y., Li, H.: Minimum-cost consensus models under aggregation operators. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41(6), 1253–1261 (2011)CrossRefGoogle Scholar
  19. 19.
    Eklund, P., Rusinowska, A., De Swart, H.: A consensus model of political decision-making. Ann. Oper. Res. 158(1), 5–20 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Fu, C., Yang, S.: An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements. Eur. J. Oper. Res. 223(1), 167–176 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gong, Z., Forrest, J., Yang, Y.: The optimal group consensus models for 2-tuple linguistic preference relations. Knowl. Based Syst. 37, 427–437 (2013)CrossRefGoogle Scholar
  22. 22.
    Kacprzyk, J., Zadrozny, S.: Soft computing and web intelligence for supporting consensus reaching. Soft Comput. 14(8), 833–846 (2010)CrossRefGoogle Scholar
  23. 23.
    Palomares, I., Sánchez, P., Quesada, F., Mata, F., Martínez, L.: COMAS: A multi-agent system for performing consensus processes. In: A. Abraham et al. (Eds.) International Symposium on Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol. 91, pp. 125–132. Springer (2011)Google Scholar
  24. 24.
    Parreiras, R., Ekel, P., Martini, J., Palhares, R.: A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Inf. Sci. 180(7), 1075–1089 (2010)CrossRefGoogle Scholar
  25. 25.
    Wu, Z., Xu, J.: Consensus reaching models of linguistic preference relations based on distance functions. Soft Comput. 16(4), 577–589 (2012)CrossRefMATHGoogle Scholar
  26. 26.
    Eclipse Foundation: Eclipse RCP: Eclipse Rich Client Platform (Version 4.6). (2016)
  27. 27.
    Chiclana, F., Herrera-Viedma, E., Alonso, S., Herrera, F.: Cardinal consistency of reciprocal preference relations: a characterization of multiplicative transitivity. IEEE Trans. Fuzzy Syst. 17(1), 14–23 (2009)CrossRefGoogle Scholar
  28. 28.
    Palomares, I., Martínez, L., Herrera, F.: MENTOR: A graphical monitoring tool of preferences evolution in large-scale group decision making. Knowl. Based Syst. 58, 66–74 (2014)CrossRefGoogle Scholar
  29. 29.
    Chiclana, F., Mata, F., Martínez, L., Herrera-Viedma, E., Alonso, S.: Integration of a consistency control module within a consensus model. Int. J. Uncertain. Fuzziness Knowl Based Syst. 16(1), 35–53 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kacprzyk, J., Zadrozny, S.: Supporting consensus reaching processes under fuzzy preferences and a fuzzy majority via linguistic summaries. In: Greco, S., Pereira, R.A.M., Squillante, M., Yager, R.R., Kacprzyk, J. (eds.) Preferences and Decisions. Studies in fuzziness and soft computing, vol. 257, pp. 261–279. Springer, Berlin (2010)Google Scholar
  31. 31.
    Palomares, I., Martínez, L.: A semi-supervised multi-agent system model to support consensus reaching processes. IEEE Trans. Fuzzy Syst. 22(4), 762–777 (2014)CrossRefGoogle Scholar
  32. 32.
    Wu, Z., Xu, J.: A concise consensus support model for group decision making with reciprocal preference relations based on deviation measures. Fuzzy Sets Syst. 206(1), 58–73 (2012)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Xu, Y., Li, K., Wang, H.: Distance-based consensus models for fuzzy and multiplicative preference relations. Inf. Sci. 253, 56–73 (2013)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Algorithmics Group: MDSJ: Java Library for Multidimensional Scaling (Version 0.2). (2009)
  35. 35.
    The Apache Software Foundation: Commons Math: The Apache Commons Mathematics Library (Version 3.6.1). (2016)
  36. 36.
    Palomares, I., Quesada, F., Martínez, L.: An approach based on computing with words to manage experts’ behavior in consensus reaching processes with large groups. In: Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2014) pp. 476–483 (2014)Google Scholar
  37. 37.
    Quesada, F., Palomares, I., Martínez, L.: Managing experts behavior in large-scale consensus reaching processes with uninorm aggregation operators. Appl. Soft Comput. 35, 873–887 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Universidad de JaénJaénSpain

Personalised recommendations