A hybrid dynamic programming for solving a mixed-model sequencing problem with production mix restriction and free interruptions

Abstract

In this article, we propose a hybrid procedure based on bounded dynamic programming assisted by linear programming to solve the mixed-model sequencing problem with workload minimization with serial workstations, free interruption of the operations and with production mix restrictions. We performed a computational experiment with 23 instances related to a case study of the Nissan powertrain plant located in Barcelona. The results of our proposal are compared with those obtained by mixed integer linear programming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Miltenburg, J.: Scheduling mixed-model assembly lines for just-in-time production systems. Manag. Sci. 35(2), 192–207 (1989)

    Article  MATH  Google Scholar 

  2. 2.

    Monden, Y.: Toyota Production System—An Integrated Approach to Just-In-Time. Springer, US (1994)

    Google Scholar 

  3. 3.

    Yano, C.A., Rachamadugu, R.: Sequencing to minimize work overload in assembly lines with product options. Manag. Sci. 37(5), 572–586 (1991)

    Article  Google Scholar 

  4. 4.

    Bautista, J., Alfaro, R., Batalla, C.: Modeling and solving the mixed-model sequencing problem to improve productivity. Int. J. Prod. Econ. 161, 83–95 (2015)

    Article  Google Scholar 

  5. 5.

    Parrello, B.D., Kabat, W.C., Wos, L.: Job-shop scheduling using automated reasoning: a case study of the car-sequencing problem. J. Autom. Reas. 2(1), 1–42 (1986)

    MathSciNet  Google Scholar 

  6. 6.

    Golle, U., Rothlauf, F., Boysen, N.: Iterative beam search for car sequencing. Ann. Oper. Res. 226(1), 239–254 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Morin, S., Gagné, C., Gravel, M.: Ant colony optimization with a specialized pheromone trail for the car-sequencing problem. Eur. J. Oper. Res. 197(3), 1185–1191 (2009)

    Article  Google Scholar 

  8. 8.

    Bautista, J., Pereira, J., Adenso-Díaz, B.: A beam search approach for the optimization version of the car sequencing problem. Ann. Oper. Res. 159(1), 233–244 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bautista, J., Pereira, J., Adenso-Díaz, B.: A GRASP approach for the extended car sequencing problem. J. Schedul. 11(1), 3–16 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Drexl, A., Kimms, A., Matthießen, L.: Algorithms for the car sequencing and the level scheduling problem. J. Schedul. 9(2), 153–176 (2006)

    Article  MATH  Google Scholar 

  11. 11.

    Fattahi, P., Salehi, M.: Sequencing the mixed-model assembly line to minimize the total utility and idle costs with variable launching interval. Int. J. Adv. Manuf. Technol. 45(9–10), 987–998 (2009)

  12. 12.

    Tsai, L.H.: Mixed-model sequencing to minimize utility work and the risk of conveyor stoppage. Manag. Sci. 41(3), 485–495 (1995)

    Article  MATH  Google Scholar 

  13. 13.

    Bautista, J., Cano, A., Alfaro, R.: Modeling and solving a variant of the mixed-model sequencing problem with work overload minimisation and regularity constraints. An application in Nissan’s Barcelona Plant. Exp. Syst. Appl. 39(12), 11001–11010 (2012)

    Article  Google Scholar 

  14. 14.

    Manavizadeh, N., Tavakoli, L., Rabbani, M., Jolai, F.: A multi-objective mixed-model assembly line sequencing problem in order to minimize total costs in a Make-To-Order environment, considering order priority. J. Manuf. Syst. 39(1), 124–137 (2013)

    Article  Google Scholar 

  15. 15.

    Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines: survey, classification and model critique. Eur. J. Oper. Res. 192(2), 349–373 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Bolat, A.: A mathematical model for sequencing mixed models with due dates. Int. J. Prod. Res. 41(5), 897–918 (2003)

    Article  MATH  Google Scholar 

  17. 17.

    Bautista, J., Cano, A.: Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules. Eur. J. Oper. Res. 210(3), 495–513 (2011)

    Article  MATH  Google Scholar 

  18. 18.

    Bautista, J., Cano, A., Alfaro, R.: Modeling and solving a variant of MMSP-W problem with production mix restrictions. In: Prado-Prado, J.C., García-Arca, J. (eds.) Annals of Industrial Engineering 2012. Springer, London (2014). doi:10.1007/978-1-4471-5349-8_28

  19. 19.

    Bautista, J., Cano, J.: Minimizing work overload in mixed-model assembly lines. Int. J. Prod. Econ. 112(1), 177–191 (2008)

    Article  Google Scholar 

  20. 20.

    Bolat, A., Yano, C.A.: Scheduling algorithms to minimize utility work at a single station on paced assembly line. Prod. Plann. Contr. 3(4), 393–405 (1992)

    Article  Google Scholar 

  21. 21.

    Scholl, A., Klein, R., Domschke, W.: Pattern based vocabulary building for effectively sequencing mixed-model assembly lines. J. Heurist. 4(4), 359–381 (1998)

    Article  MATH  Google Scholar 

  22. 22.

    Erel, E., Gocgun, Y., Sabuncuoglu, I.: Mixed-model assembly line sequencing using beam search. Int. J. Prod. Res. 45(22), 5265–5284 (2007)

    Article  MATH  Google Scholar 

  23. 23.

    Aigbedo, H., Monden, Y.: A parametric procedure for multcriterion sequence scheduling for just-in-time mixed-model assembly lines. Int. J. Prod. Res. 35(9), 2543–2564 (1997)

    Article  MATH  Google Scholar 

  24. 24.

    Kotani, S., Ito, T., Ohno, K.: Sequencing problem for a mixed-model assembly line in the Toyota production system. Int. J. Prod. Res. 42(23), 4955–4974 (2004)

    Article  MATH  Google Scholar 

  25. 25.

    Ding, F.Y., Zhu, J., Sun, H.: Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives. Int. J. Prod. Econ. 102(1), 108–131 (2006)

    Article  Google Scholar 

  26. 26.

    Rahimi-Vahed, A., Mirzaei, A.H.: A hybrid multi-objective shuffled frog-leaping algorithms for a mixed-model assembly line sequencing problem. Comput. Ind. Eng. 53(4), 642–666 (2007)

    Article  Google Scholar 

  27. 27.

    Bautista, J., Companys, R., Corominas, A.: Heuristics and exact algorithms for solving the Monden problem. Eur. J. Oper. Res. 88(1), 101–113 (1996)

    Article  MATH  Google Scholar 

  28. 28.

    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. J. 11(6), 4135–4151 (2011)

    Article  MATH  Google Scholar 

  29. 29.

    Bautista, J., Cano, A., Alfaro, R., Batalla, C.: Impact of the production mix preservation on the orv problem. In: Bielza, C., et al. (eds.) CAEPIA 2013, LNAI 8109, pp. 250–259 (2013). Springer, Berlin. doi:10.1007/978-3-642-40643-0_26

  30. 30.

    Blum, C.: Beam-ACO-hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

  31. 31.

    Bautista, J., Alfaro-Pozo, R., Batalla-García, C.: GRASP for sequencing mixed models in an assembly line with work overload, useless time and production regularity. Progr. Artif. Intell. 5(1), 27–33 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministerio de Economía y Competitividad (Spanish Government) through the FHI-SELM2 (TIN2014-57497-P) project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joaquín Bautista.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bautista, J., Cano, A. & Alfaro-Pozo, R. A hybrid dynamic programming for solving a mixed-model sequencing problem with production mix restriction and free interruptions. Prog Artif Intell 6, 27–39 (2017). https://doi.org/10.1007/s13748-016-0101-5

Download citation

Keywords

  • Mixed-model sequencing
  • Dynamic programming
  • Mixed integer linear programming
  • Hybrid metaheuristics
  • Industrial application