Advertisement

Progress in Artificial Intelligence

, Volume 5, Issue 4, pp 289–305 | Cite as

Vine copula classifiers for the mind reading problem

  • Diana Carrera
  • Roberto Santana
  • Jose A. Lozano
Regular Paper

Abstract

In this paper we introduce vine copulas to model probabilistic dependencies in supervised classification problems. Vine copulas allow the representation of the dependence structure of multidimensional distributions as a factorization of bivariate pair-copulas. The flexibility of this model lies in the fact that we can mix different types of pair-copulas in a factorization, which allows covering a wide range of types of dependencies, i.e., from independence to much more complex forms of bivariate correlations. This property motivates us to use vine copulas as classifiers, particularly for problems for which the type and strength of bivariate interactions between the variables show a great variability. This is the case of brain signal classification problems where information is represented as multiple time series, each one recorded from different brain region. Our experimental results on a real-word Mind Reading Problem reveal that vine copula-based classifiers perform competitively compared to the four best classification methods presented at the Mind Reading Challenge Competition 2011.

Keywords

Vine Copulas Vine copulas classifiers Mind reading 

Notes

Acknowledgments

This work is partially supported by the Basque Government (IT609-13 and Elkartek), and Spanish Ministry of Economy and Competitiveness MINECO (TIN2013-41272P). Jose A. Lozano is also supported by BERC 2014-2017 and Elkartek programs (Basque government) and Severo Ochoa Program SEV-2013-0323 (Spanish Ministry of Economy and Competitiveness)

References

  1. 1.
    Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur.: Math. Econ. 44(2), 182–198 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1), 245–268 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bedford, T., Cooke, R.M.: Vines—a new graphical model for dependent random variables. Ann. Stat. 30(4), 1031–1068 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berg, D., Aas, K.: Models for construction of higher-dimensional dependence: a comparison study. Eur. J. Fin. 15, 639–659 (2009)CrossRefGoogle Scholar
  5. 5.
    Blankertz, B., Curio, G., Muller, K.-R.: Classifying single trial EEG: towards brain computer interfacing. Adv. Neural Inf. Process. Syst. 1, 157–164 (2002)Google Scholar
  6. 6.
    Czado, C.: Pair-copula constructions of multivariate copulas. In: Jaworski, P., Durante, F., Härdle, W.K., Rychlik, T. (eds.) Copula Theory and Its Applications, Lecture Notes in Statistics, vol. 198, pp. 94–111. Springer (2010). ISBN 978-3-642-12464-8Google Scholar
  7. 7.
    Dissmann, J.F., Brechmann, E.C., Czado, C. Kurowicka, D.: Selecting and estimating regular vine copulae and application to financial returns. Comput. Stat. Data Anal. 59 (2013): 52–69 (2012)Google Scholar
  8. 8.
    Elidan, G.: Copula bayesian networks. In: Advances in Neural Information Processing Systems, pp. 559–567 (2010)Google Scholar
  9. 9.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003)CrossRefGoogle Scholar
  11. 11.
    Genest, C., Favre, A.C.: Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12(4), 347–368 (2007)CrossRefGoogle Scholar
  12. 12.
    Genest, C., Rémillard, B.: Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’IHP Probabilités et statistiques 44, 1096–1127 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Haselsteiner, E., Pfurtscheller, G.: Using time-dependent neural networks for EEG classification. IEEE Trans. Rehabil. Eng. 8(4), 457–463 (2000)CrossRefGoogle Scholar
  14. 14.
    Huttunen, H., Kauppi, J.-P., Tohka, J.: Regularized logistic regression for mind reading with parallel validation. In: Proceedings of ICANN/PASCAL2 Challenge: MEG Mind-Reading, pp. 20–24 (2011)Google Scholar
  15. 15.
    Huttunen, H., Manninen, T., Kauppi, J.-P., Tohka, J.: Mind reading with regularized multinomial logistic regression. Mach. Vis. Appl. 24(6), 1311–1325 (2013)CrossRefGoogle Scholar
  16. 16.
    Joe, H.: Families of \(m\)-variate distributions with given margins and \(m(m-1)/2\) bivariate dependence parameters. In: Rüschendorf, L., Schweizer, B., Taylor, M.D. (eds.) Distributions with Fixed Marginals and Related Topics, pp. 120–141 (1996)Google Scholar
  17. 17.
    Joe, H.: Asymptotic efficiency of the two-stage estimation method for the copula-based models. J. Multivar. Anal. 94(2), 401–419 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Joe, H., Xu, J.J.: The estimation method of inference functions for margins for multivariate models. Technical report 166, University of British Columbia (1996)Google Scholar
  19. 19.
    Jylänki, P., Riihimäki, J., Vehtari, A.: Multi-class gaussian process classification of single trial MEG based on frequency specific latent features extracted with binary linear classifiers. In: Proceedings of ICANN/PASCAL2 Challenge: MEG Mind-Reading, pp. 31–34 (2011)Google Scholar
  20. 20.
    Klami, A., Ramkumar, P., Virtanen, S., Parkkonen, L., Hari, R., Kaski, S.: ICANN/PASCAL2 challenge: MEG mind reading. Overview and results. In: Klami, A. (ed.) Proceedings of ICANN/PASCAL2 Challenge: MEG Mind Reading, Aalto University Publication series SCIENCE + TECHNOLOGY, pp. 3–19. Aalto University (2011)Google Scholar
  21. 21.
    Lebedev, M.A., Nicolelis, M.A.L.: Brain-machine interfaces: past, present and future. TRENDS Neurosci. 29(9), 536–546 (2006)CrossRefGoogle Scholar
  22. 22.
    Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4, R1–R13 (2007)CrossRefGoogle Scholar
  23. 23.
    Naselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L.: Encoding and decoding in fMRI. Neuroimage 56(2), 400–410 (2011)CrossRefGoogle Scholar
  24. 24.
    Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  25. 25.
    Olivetti, E., Kia, S.M., Avesani, P.: MEG decoding across subjects. In: Proceedings of the 2014 International Workshop on Pattern Recognition in Neuroimaging, pp. 1–4 (2014)Google Scholar
  26. 26.
    Rakotomamonjy, A., Guigue, V.: BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. Biomed. Eng. IEEE Trans. 55(3), 1147–1154 (2008)CrossRefGoogle Scholar
  27. 27.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. Rehabil. Eng. IEEE Trans. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  28. 28.
    Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT Press, Boston (2006)zbMATHGoogle Scholar
  29. 29.
    Rieger, J.W., Reichert, C., Gegenfurtner, K.R., Noesselt, T., Braun, C., Heinze, H.J., Kruse, R., Hinrichs, H.: Predicting the recognition of natural scenes from single trial MEG recordings of brain activity. Neuroimage 42(3), 1056–1068 (2008)CrossRefGoogle Scholar
  30. 30.
    Romano, C.: Calibrating and simulating copula functions: an application to the italian stock market. Working paper 12, Centro Interdipartimale sul Diritto e l’Economia dei Mercati (2002)Google Scholar
  31. 31.
    Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Salinas-Gutiérrez, R., Hernández-Aguirre, A., Rivera-Meraz, M.J.J., Villa-Diharce, E.R. Supervised probabilistic classification based on Gaussian copulas. In: Advances in Soft Computing, pp. 104–115. Springer (2010)Google Scholar
  33. 33.
    Salinas-Gutiérrez, R., Hernández-Aguirre, A., Villa-Diharce, E.: Estimation of distribution algorithms based on copula functions. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 795–798 (2011)Google Scholar
  34. 34.
    Santana, R., Bielza, C., Larrañaga, P.: An ensemble of classifiers approach with multiple sources of information. In: Klami, A. (ed.) Proceedings of ICANN/PASCAL2 Challenge: MEG Mind Reading, Aalto University Publication series SCIENCE + TECHNOLOGY, pp. 25–30. Aalto University (2011)Google Scholar
  35. 35.
    Santana, R., Bielza, C., Larrañaga, P.: Regularized logistic regression and multi-objective variable selection for classifying MEG data. Biol. Cybern. 106(6–7), 389–405 (2012)CrossRefzbMATHGoogle Scholar
  36. 36.
    Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Infer. 90(2), 227–244 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sklar, A.: Fonctions de repartition à \(n\) dimensions et leurs marges. Publications de l’Institut de Statistique de l’Universite de Paris 8, 229–231 (1959)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Diana Carrera
    • 1
  • Roberto Santana
    • 1
  • Jose A. Lozano
    • 1
    • 2
  1. 1.Intelligent Systems GroupUniversity of the Basque Country, UPV/EHUDonostiaSpain
  2. 2.Basque Center for Applied Mathematics, BCAMBilbaoSpain

Personalised recommendations