Skip to main content

Advertisement

Log in

Detecting Darwinian Shortfalls in the Amazonian Odonata

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Among the oldest winged insects, odonates are a monophyletic order that have become important models for ecological studies because of their highly diverse reproductive behaviors and their role as top predators and bioindicators. However, knowledge on evolutionary relationships within the order is still scarce compared to other taxa, and this situation is even more complicated in areas with high biodiversity, such as in the Amazon. Here, we sought to identify knowledge gaps on Amazonian Odonata regarding three main aspects: (i) how the inclusion of Amazonian taxa affects our interpretation of the evolutionary relationships of Zygoptera and Anisoptera; (ii) the position of Amazonian taxa in the existing supertree of the Odonata; (iii) dating evolutionary divergence between nodes using fossil records; (iv) assessing whether more species-rich basins (e.g., Amazon basin) have a larger phylogenetic gap when compared to basins with lower richness in South and Central America; and (v) in the light of our knowledge, we discuss diversification patterns found in the most predominant clades of Amazonian taxa. We built a supertree from currently available phylogenetic information of Odonata. The results show that there is no genetic information for 85% (n: 503) of the Amazonian species and that family level relationships are unknown for 17 genera. After compiling the data, we observed that clades belonging to Neotropical lineages are the most poorly resolved, with large polytomies. This problem was identified in many Anisoptera genera, such as Macrothemis, Dasythemis, Elasmothemis, and Erythrodiplax. Our results also suggest that not always the richest basins have the greatest phylogenetic gaps. As expected, we found important gaps in the existing Odonata phylogenies, especially in clades that include Amazonian representatives, that are also those less known from ecological and conservation perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Assis JCF, Carvalho AL, Nessimian JL (2004) Composição e preferência por microhábitat de imaturos de Odonata (Insecta) em um trecho de baixada do Rio Ubatiba, Maricá-RJ, Brasil. Rev Bras Entomol 48:273–282. https://doi.org/10.1590/S0085-56262004000200017

    Article  Google Scholar 

  • Bastos RC, Brasil LS, Oliveira-Junior JMB et al (2021) Morphological and phylogenetic factors structure the distribution of damselfly and dragonfly species (Odonata) along an environmental gradient in Amazonian streams. Ecol Indic 122.https://doi.org/10.1016/j.ecolind.2020.107257

  • Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:36–42. https://doi.org/10.1093/nar/gks1195

    Article  CAS  Google Scholar 

  • Bininda-Emonds ORP (2004) The evolution of supertrees. Trends Ecol Evol 19.https://doi.org/10.1016/j.tree.2004.03.015

  • Brauer F (1868) Verzeichniss der bis jetzt bekannten Neuropterem im Sinne Linne’s. Verhandlungen Zool Gesellschaft Wien 18:359–416

    Google Scholar 

  • Brum FT, Debastiani VJ, Loyola R, Duarte LDS (2014) Clade-specific impacts of human land use on primates. Nat Conserv 12:144–149. https://doi.org/10.1016/j.ncon.2014.09.009

    Article  Google Scholar 

  • Bybee SM, Kalkman VJ, Erickson RJ et al (2021) Phylogeny and classification of Odonata using targeted genomics. Mol Phylogenet Evol 160:107–115. https://doi.org/10.1016/j.ympev.2021.107115

    Article  Google Scholar 

  • Bybee SM, Ogden TH, Branham MA, Whiting MF (2008) Cladistics Molecules, morphology and fossils : a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics 24:477–514

    Article  Google Scholar 

  • Calvão LB, Nogueira DS, de Assis Montag LF et al (2016) Are Odonata communities impacted by conventional or reduced impact logging? For Ecol Manage 382:143–150. https://doi.org/10.1016/j.foreco.2016.10.013

    Article  Google Scholar 

  • Calvert PP (1901) Odonata, in: Biologia Centrali-Americana: Insecta Neuroptera: RH Porter and Dulau Co London. 17–72

  • Calvert PP (1909) Contributions to a knowledge of the Odonata of the Neotropical region, exclusive of Mexico and Central America. Ann Carnegie Museum 6:73–264

    Google Scholar 

  • Calvert PP (1913) The fossil Odonate Phenacolestes, with discussion of the venation of the legion Podagrion Selys. Proc Acad Natl Sci Phil 65:225–272

    Google Scholar 

  • Calvert PP (1948) Odonata (dragonflies) of kartabo, Bartica District, British Guiana. Zool Sci Contrib N Y Zool Soc 33:47–87

    Google Scholar 

  • Carle FL, Kjer KM, May ML (2015) A molecular phylogeny and classification of Anisoptera (Odonata). Arthropod Syst Phylogeny 73:281–301

    Google Scholar 

  • Carvalho FG, Roque FO, Barbosa L, Montag LFA, Juen L (2018) Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Anim Conserv:1-8.https://doi.org/10.1111/acv.12427

  • Carvalho FG, Duarte L, Nakamura G, Seger GDS, Juen L (2021) Changes of phylogenetic and taxonomic diversity of Odonata (Insecta) in response to land use in Amazonia. Forests 12:2–15. https://doi.org/10.3390/f12081061

    Article  Google Scholar 

  • Cezário RR, Firme PP, Pestana GC, Vilela DS, Leandro Juen L, Cordero-Rivera A, Guillermo R (2020) Sampling methods for dragonflies and damselflies. Meas Arthr Biodiver:223-240.

  • Corbet PS (1999) Dragonflies. Behaviour and ecology of Odonata. Harley Books, Colchester, p 829

    Google Scholar 

  • Cowley J (1934) The types of some genera of Gomphidae (Odonata). Entom 67:273–276

  • Debastiani VJ, Muller SC, Oliveira JM, Rocha FS, Sestren-Bastos MC, Duarte LS (2015) Recurrent patterns of phylogenetic habitat filtering in woody plant communities across phytogeographically distinct grassland-forest ecotones. Commun Ecol 16:1–09

    Article  Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x

    Article  PubMed  Google Scholar 

  • Dijkstra KB, Kalkman VJ, Rory A, Dow FRS et al (2014) Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata). Syst Entomol 39:68–96. https://doi.org/10.1111/syen.12035

    Article  Google Scholar 

  • Diniz-Filho AF, Loyola RD, Raia P, Mooers AO, Bini LM (2013) Darwinian shortfalls in biodiversity conservation. Trends Ecol Evol 28:1–7. https://doi.org/10.1016/j.tree.2013.09.003

    Article  Google Scholar 

  • Duarte LS (2011) Phylogenetic habitat filtering influences forest nucleation in grasslands. Oikos 120:208–215

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. https://doi.org/10.1016/0006-3207(92)91201-3

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferreira RG, Juen L (2021) Odonate ethodiversity as a bioindicator of anthropogenic impact. Int J Odonatol 24:149–157. https://doi.org/10.23797/2159-6719/24/11

    Article  Google Scholar 

  • Gerhold P, Cahill JF, Winter M et al (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614. https://doi.org/10.1111/1365-2435.12425

    Article  Google Scholar 

  • Gianuca AT, Dias RA, Debastiani VJ, Duarte LS (2014) Habitat filtering influences the phylogenetic structure of avian communities across a coastal gradient in southern Brazil. Austral Ecol 39:29–38. https://doi.org/10.1111/aec.12042

    Article  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press pp 755

  • Hagen HA (1861) Synopsis of the Neuroptera of North America, with a list of the South American Species, prepared for the Smithsoniam Instituiton. Washington DC. Smithsonian Inst. : 20+347 pp (8v)

  • Hagen HA (1868) Odonaten Cubas (Fortsetzung). Stett Ent Ztg.  29:274–287

    Google Scholar 

  • Hamada N, Nessimian JL, Querino RB (2014) Insetos aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. INPA, Manaus

    Google Scholar 

  • Harvey H, Thompson DJ, French GC, Harvey IF (2007) Historical changes in the phenology of British Odonata are related to climate. Glob Chang Biol 13:933–941. https://doi.org/10.1111/j.1365-2486.2007.01318.x

    Article  Google Scholar 

  • Heckman CW (2006) Encyclopedia of South American aquatic insects: Odonata - Anisoptera: illustrated keys to known families, genera, and species in South America., Springer. Springer Netherlands, Dordrecht

    Google Scholar 

  • Jombart T, Balloux F, Dray S (2010) adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinform 26:1907–1909. https://doi.org/10.1093/bioinformatics/btq292

  • Juen L, Oliveira-Junior JMB, Shimano Y (2014) Composição e riqueza de Odonata (Insecta) em riachos com diferentes níveis de conservação em um ecótone Cerrado-Floresta Amazônica. Acta Amaz 44:175–184. https://doi.org/10.1590/S0044-59672014000200008

    Article  Google Scholar 

  • Kalkman VJ (2008) Taxonomy, behaviour, and habitat of Mesopodagrion and Sinocnemis. Notes on Old World Megapodagrionidae 3. Int J Odonatol 11:185–193. https://doi.org/10.1080/13887890.2008.9748322

    Article  Google Scholar 

  • Kennedy CH (1920) Forty-two hitherto unrecognized genera and subgenera of Zygoptera. Ohio J Sci 21:83–88

    Article  Google Scholar 

  • Kirby WF (1889) A revision of the subfamily Libellulinae, with descriptions of new genera and species. Trans Zool Soc Lond 12:249–348

    Article  Google Scholar 

  • Kirby WF (1890) A synonymic catalogue of Neuroptera Odonata, or dragonflies, with an appendix of fossil species, vol ix. Gurney and Jackson, London, p 202

    Book  Google Scholar 

  • Leach WE (1815) Entomology. In: Brewester D (ed) The Edinburgh Encyclopedia. Vol. IX, Part I. Ed-inburgh, pp 57–172

  • Lestsch H, Gottsberger B, Ware JL (2016) Not going with the flow : a comprehensive time-calibrated phylogeny of dragonflies (Anisoptera : Odonata : Insecta) provides evidence for the role of lentic habitats on diversification. Mol Ecol 25:1340–1353. https://doi.org/10.1111/mec.13562

    Article  Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum Classes, Ordines, Genera Species, cum Characteribus, Differentiis, Synonymis, Locis. Holmiae, Laurentii Salvii (Edition 10). 1 (Animalia), iv+824

  • Loyola RD, Lemes P, Brum FT et al (2014) Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography (Cop) 37:65–72. https://doi.org/10.1111/j.1600-0587.2013.00396.x

    Article  Google Scholar 

  • Martins CA, Roque FO, Santos BS, Ferreira VL, Strüssmann C, Tomas WM (2016) What shapes the phylogenetic structure of anuran communities in a seasonal environment? The influence of determinism at regional scale to stochasticity or antagonistic forces at local scale. PLoS ONE 11(3):e0151734. https://doi.org/10.1371/journal.pone.0130075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May ML (1976) Thermoregulation and adaptation to temperature in dragonflies (Odonata : Anisoptera). Ecol Monogr 46:1–32. https://doi.org/10.2307/1942392

    Article  Google Scholar 

  • Miguel TB, Oliveira-Junior JMB, Ligeiro R, Juen L (2017) Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Indic 81:555–566. https://doi.org/10.1016/j.ecolind.2017.06.010

    Article  CAS  Google Scholar 

  • Misof B (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 763:763–767. https://doi.org/10.1126/science.1257570

    Article  CAS  Google Scholar 

  • Misof B, Liu S, Meusemann K et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  Google Scholar 

  • Monteiro-Júnior CS, Juen L, Hamada N (2014) Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landsc Urban Plan 127:28–40. https://doi.org/10.1016/j.landurbplan.2014.03.006

    Article  Google Scholar 

  • Montgomery BE (1959) Geographical distribution of the New World calopterygine dragonflies, with notes on their evolutionary position. Proceedings of the XVth. Int Congress Zoo Lond 1001–1003

  • Munz PA (1919) A venational study of the suborder Zygoptera (Odonata) with keys for the identification of genera. Mem Am Entomol Soc 3:1–78

    Google Scholar 

  • Muttkowski RA (1910) Catalogue of the Odonata of North America. Bull Public Museum 1:1–207

    Google Scholar 

  • Nakamura G, Richter A, Soares BE (2021) FishPhyloMaker: an R package to generate phylogenies for ray-finned fishes. bioRxiv:1109–1110. https://doi.org/10.1101/2021.05.07.442752

  • Needham JG (1903) A genealogic study of dragon-fly wing venation. Proceedings of the States National Museum 26:703-764+pl. 31-54

  • Oliveira-Junior JMB, Juen L (2019) The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop Entomol 48:552–560. https://doi.org/10.1007/s13744-019-00672-x

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Junior JMB, Shimano Y, Gardner TA et al (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40:733–744. https://doi.org/10.1111/aec.12242

    Article  Google Scholar 

  • Oliveira-junior JMB, De Marco PJ et al (2017) Limnologica effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica 66:31–39. https://doi.org/10.1016/j.limno.2017.04.007

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  Google Scholar 

  • Pennell M, Eastman J, Slater G, Brown J, Uyeda J, Fitzjohn R, Alfaro M, Harmon L (2014) geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30:2216–2218

    Article  CAS  Google Scholar 

  • Rácenis J (1959) Notas taxonómicas sobre la familia Mepapodagrionidae (Odonata: Zygoptera) con sinopsis de las especies venezolanas. Acta Bio Venez 2(30):335–367

    Google Scholar 

  • Rambur P. (1842) Histoire Naturelle des Insectes: Neuropteres. iLbraire Encycl Roret, Paris xvii: 534 pp

  • Resende BO, Ferreira VRS, Brasil LS et al (2021) Impact of environmental changes on the behavioral diversity of the Odonata (Insecta) in the Amazon. Sci Rep 11:9742. https://doi.org/10.1038/s41598-021-88999-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revell LJ (2012) phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

  • Santamaría L, Méndez PF (2012) Evolution in biodiversity policy - current gaps and future needs. Evol Appl 5:202–218. https://doi.org/10.1111/j.1752-4571.2011.00229.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Saux C, Simon C, Spicer GS (2003) Phylogeny of the dragonfly and damselfly order Odonata as inferred by mitochondrial 12S ribosomal RNA sequences. Ann Entomol Soc Am 96:693–699

    Article  CAS  Google Scholar 

  • Selys E (1850) Revue des odonates ou libellules d’Europe. Mémoires de la Société des Sciences de Liège, 6: xxii+408 11 pls, 6 tabs

  • Selys LE (1853) Synopsis des Caloptérygies. Bull Acad r Belg 20:73 pp

  • Selys LE (1854) Synopsis des Gomphines. Bull mém Acad r  méd Belg 21:23–112

    Google Scholar 

  • Selys LE (1862) Environmental integrity and damselfly species composition in Amazonian streams at the “arc of deforestation” region, Mato Grosso, Brasil. Des Lettres Des B-Art Belgique 2:5–44. https://doi.org/10.1590/S2179-975X2014000300007

    Article  Google Scholar 

  • Selys LME (1860) Synopsis des Agrionines. Dernière légion: Protoneura Bull Arcad r Belg 10(2):431–462

    Google Scholar 

  • Selys LME (1865) Synopsis des Agrionides. 5e légion: Agrion Bull Acad r Belg, 20(2):375–417

  • Souza LOI, Costa JM, Oldrini BB (2007) Odonata. In: Guia on-line: Identificação de larvas de Insetos Aquáticos do Estado de São Paulo. Froehlich CG (org). Disponível em: http://sites.ffclrp.usp.br/aguadoce/Guia_online

  • Smith SA, Brown JW (2018) Constructing a broadly inclusive seed plant phylogeny. Botany 105:302–314. https://doi.org/10.1002/ajb2.1019

    Article  Google Scholar 

  • Tedesco PA, Beauchard O, Bigorne R et al (2017) Data Descriptor: a global database on freshwater fish species occurrence in drainage basins. Sci Data 4:1–6. https://doi.org/10.1038/sdata.2017.141

    Article  Google Scholar 

  • Tian L, Cai T, Goetghebeur E, Wei LJ (2007) Biometrika 94:297–311

  • Tillyard RJ (1917)The biology of dragonflies (Odonata or Paraneuroptera). Cambridge University Press, Cambridge Zoological Series, London, xii + 396 pp

  • Torres-pachón M, Novelo-Gutiérrez R, Los AE (2017) Phylogenetic analysis of the genus Argia Rambur, 1842 (Odonata: Coenagrionidae), based on morphological characters of larvae and mitochondrial DNA sequences. Org Divers Evol 1842:409–420

    Article  Google Scholar 

  • Waller JT, Svensson EI (2017) Body size evolution in an old insect order: no evidence for Cope’s Rule in spite of fitness benefits of large size. Evolution 71:2178–2193. https://doi.org/10.1111/evo.13302

    Article  PubMed  Google Scholar 

  • Ware J, May M, Kjer K (2007) Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): an exploration of the most speciose superfamily of dragonflies. Mol Phylogenet Evol 45:289–310. https://doi.org/10.1016/j.ympev.2007.05.027

    Article  CAS  PubMed  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

  • Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ (2002) Phylogenies and Community Ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. https://doi.org/10.1111/j.1471-8286.2004.00829.x

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinform 24(18):2098–2100

    Article  CAS  Google Scholar 

  • Westfall MJ (1988) Elasmothemis gen. Nov., a new genus’s related to Dythemis (Anisoptera: Libellulidae). Odonatologica 17:419–428

    Google Scholar 

  • Williamson EB (1917) Some species of Leptagrion with descriptions of a new genus and a new species. Ent News 27:241–254

    Google Scholar 

  • Williamson EB, Williamson JH (1924) A remarkable new genus of Coenagrionidae from Brazil, with descriptions of there new species (Odonata). Occ Pap Mus Zool 1541–25:147–458

    Google Scholar 

  • Zizka A, Silvestro D, Andermann T et al (2019) CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol Evol 10:744–751. https://doi.org/10.1111/2041-210X.13152

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dra. Lenize Batista Calvão, MSc, Alejandro Del Palacio, and Frederico A. A. Lencioni for assisting with odonate identification and Dr. Erlane José Rodrigues da Cunha and Santelmo Vasconcelos for the help in the elaboration of the figures.

Funding

We thank Conservation International (CI), Grupo Agropalma, 33 Forest, Pesquisa de Biodiversidade na Amazônia Oriental (PPBio), Fundação Amazônica de Amparo a Estudo e Pesquisa (FAPESPA), Instituto de Floresta Tropical (IFT), CIKEL Ltda., Biodiversity Research Consortium Brazil-Norway (BCR), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial and logistic support. We also thank for a PhD grant to FGC (CAPES process: 303252/2013–8) and PCI post-doc (CNPq process: 300881/2022–3). For a post-doc grant to GDSS and to CNPq for the productivity grants to LD (process: 307886/2015–8) and LJ (process: 304710/2019–9). LJ, LDSD, and GN research have been developed in the context of National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNPq (proc. 465610/2014–5) and FAPEG. RGF thanks CNPq (Proc. 307836/2019–3) for a productivity grant. ACR acknowledges funding by grants CGL2014-53140-P and PGC2018-096656-B-I00 from MCIN/AEI/https://doi.org/10.13039/501100011033 and from “ERDF A way of making Europe,” by the “European Union.”

Author information

Authors and Affiliations

Authors

Contributions

The author, F. G. Carvalho, was the main person responsible for writing the entire text of the article (Abstract, Introduction, Material and methods, Results and discussion), as well as in the elaboration of phylogeny. The authors L. S. Duarte and G. D. S. Seger contributed in the elaboration of the phylogeny, as well as in the writing of the Introduction and Material and methods. The authors R. Guillermo-Ferreira and A. Cordero-Rivera contributed in the taxonomic revision and distribution of the species and checked the final text. The author L. Juen contributes to the elaboration of the discussion and with the correction of the whole text, as well as the revision of the phylogenetic data.

Corresponding author

Correspondence to Fernando Geraldo Carvalho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Edited by Eugenio E de Oliveira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Annex 1 (TXT 75.9 KB)

Annex 2 (TXT 4.89 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, F.G., Duarte, L., Seger, G.D.S. et al. Detecting Darwinian Shortfalls in the Amazonian Odonata. Neotrop Entomol 51, 404–412 (2022). https://doi.org/10.1007/s13744-022-00961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-022-00961-y

Keywords

Navigation