Skip to main content
Log in

Global Potential Distribution of the South American Cutworm Pest Agrotis robusta (Lepidoptera: Noctuidae)

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Invasive pest species can represent significant losses to the agricultural economy of a country. Assessing the potential distribution of known pest species could be an important tool to evaluate possible invasive threats globally. Agrotis robusta (Blanchard) is an endemic species of temperate areas of South America considered an important pest of seedlings of sunflower, dry bean, and potatoes. The polyphagous habit of A. robusta, along with its regional importance and history of misidentifications, makes it a species of concern for other regions of the world. In this work, we assessed the potential distribution of A. robusta with Maxent based on occurrence data and variables related to climate and soil. The bioclimate profile of the species showed a marked seasonality and medium average monthly temperature, coinciding with the temperate climate of the Köppen-Geiger classification. Other important variables related to the species distribution included average solar radiation and soil pH. Suitable conditions were identified in North America, Central America, Europe, Southern Africa, Asia, and Australia. High suitable places overlapped with some of the most important countries of production of host crops of A. robusta. Our conclusions highlight the importance of taking this species into account when importing goods from countries with the presence of A. robusta, especially for countries that are important producers of host crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All data and materials as well as software application support our published claims and comply with field standards.

Code availability

All software used is available free of charge. No custom code or algorithm has been used in this study.

References

  • Aragón J (2000a) Evaluación y manejo de orugas cortadoras (Lepidoptera: Noctuidae) en cultivo de girasol en Argentina: 15th International Sunflower Congress; 2000 June; Toulouse, France

  • Aragón J (2000b) Plagas principales del girasol en la provincia de Córdoba, Argentina: 15th International Sunflower Congress; 2000 June; Toulouse, France

  • Batjes NH (2005) ISRIC-WISE: global data set of derived soil properties on a 0.5 by 0.5 degree grid (Version 3.0), Report 2005/08. ISRIC-World Soil Information, Wageningen

  • Baudino EM, Villarreal D (2007) Orugas cortadoras que dañan cultivos de cosecha gruesa y pasturas de alfalfa en la región oriental de la provincia de La Pampa. Revisión Bibliográfica Semiárida 18(1/2):11–57

    Google Scholar 

  • Claudino VCM, Specht A, Fidelis EG, Roque-Specht VF, Montezano DG, Martins PR, Silva FAM, Malaquias JV (2021) Spatio-temporal variation of Mocis latipes (Guenée, 1852) (Lepidoptera: Erebidae) populations in Brazil according to meteorological factors. Biota Neotrop 21(1):e20201114

    Article  Google Scholar 

  • Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J, Gomez J (2017) Fall armyworm: impacts and implications for Africa. Outlooks Pest Manage 28(5):196–201

    Article  Google Scholar 

  • Elith J (2017) Predicting distributions of invasive species. In: Robinson AP, Walshe T, Burgman MA, Nunn M (eds) Invasive species: risk assessment and management. Cambridge University Press, Cambridge, pp 93–129

    Chapter  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • FAO (2021) FAOSTAT ©, FAO Statistics Division. http://faostat.fao.org/ Accessed 17 September 2021

  • Fick SE, Hijmans RJ (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Floerl O, Inglis GR, Roulston H (2013) Predicted effects of climate change on potential sources of non-indigenous marine species. Divers Distrib 19:257–267

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer-Verlag, New York, p 533

    Book  Google Scholar 

  • Hayat U, Qin H, Zhao J, Akram M, Shi J, Ya Z (2021) Variation in the potential distribution of Agrotis ipsilon (Hufnagel) globally and in Pakistan under current and future climatic conditions. Plant Prot Sci 57(2):148–158

    Article  Google Scholar 

  • Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol Evol 9:1151–1156

    Article  Google Scholar 

  • Köppen W (1936) Das geographisca System der Klimate. In: Köppen W, Geiger G (eds) Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin, pp 1–44

    Google Scholar 

  • Li G, Du S, Guo K (2015) Evaluation of limiting climatic factors and simulation of a climatically suitable habitat for Chinese sea buckthorn. PloS One 10(7):e0136001

    Article  Google Scholar 

  • Lafontaine JD (2004) Noctuoidea: Noctuidae (part), Noctuinae (part–Agrotini). In: Hodges RW (ed.) The moths of North America, fascicle 27.1. Wedge Entomological Research Foundation, Washington, D.C., 385 pp

  • Lincago P, Morales G (2005) Análisis de riesgo de plagas para la importación de productos vegetales a las Islas Galápagos. Fundación Charles Darwin, Ecuador

  • Liu Y, Fu X, Feng H, Liu Z, Wu K (2015) Trans-regional migration of Agrotis ipsilon (Lepidoptera: Noctuidae) in north-east Asia. Ann Entomol Soc Am 108(4):519–527

    Article  Google Scholar 

  • Lopes-da-Silva M, Sanches M, Stancioli A, Alves G, Sugayama R (2014) The role of natural and human-mediated pathways for invasive agricultural pests: a historical analysis of cases from Brazil. Agric Sci 5:634–646

    Google Scholar 

  • MoAF (2014) Pathway-initiated pest risk analysis on onion bulbs (Allium cepa) from Argentina to Jamaica, 2009 reviewed 2014. Ministry of Agriculture & Fisheries, Jamaica, p 56

    Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles 22(1):19

    Article  Google Scholar 

  • Onwuka B, Mang B (2018) Effects of soil temperature on some soil properties and plant growth. Adv Plants Agric Res 8:34–37

    Google Scholar 

  • Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. PNAS 113(27):7575–7579

    Article  CAS  Google Scholar 

  • Pastrana JA (2004) Los lepidópteros argentinos. Sus plantas hospedadoras y otros sustratos alimenticios. Sociedad Entomológica Argentina, Buenos Aires

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union 4(2):439–473

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem: a new approach to ecological niche modeling, based on new tools drawn from biodiversity informatics, is applied to the challenge of predicting potential species invasions. BioScience 51(5):363–371

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41(4):629–643

    Article  Google Scholar 

  • Rizzo HF, La Rossa FR, Folcia AM (1995) Aspectos Morfológicos y Biológicos del “Gusano Áspero” (Agrotis malefida (Guenée))(Lep.: Noctuidae). Revista De La Facultad Agronomía-Universidad De Buenos Aires 15:199–206

    Google Scholar 

  • San Blas G (2014) Agrotis Ochsenheimer (Lepidoptera, Noctuidae): a systematic analysis of South American species. Zootaxa 3771(1):1–64

    Article  Google Scholar 

  • San Blas G, Barrionuevo MJ (2013) Status and redescription of the South American pest species Agrotis robusta (Lepidoptera. Noctuidae), a history of misidentifications. Rev Mex Biodivers 84:1153–1158

    Article  Google Scholar 

  • Showers WB, Smelser RB, Keaster AJ, Whitford F, Robinson JF, Lopez JD, Taylor SE (1989) Recapture of marked black cutworm (Lepidoptera: Noctuidae) males after long-range transport. Environ Entomol 18(3):447–458

    Article  Google Scholar 

  • Silva AGA, Gonçalves CR, Galvão DM, Gonçalves AJL, Gomes J, Silva M, do N Simoni L de (1968) Quarto catálogo dos insetos que vivem nas plantas do Brasil- Seus parasitos e predadores. Ministério da Agricultura, Rio de Janeiro

    Google Scholar 

  • Specht A, Angulo AO, Olivares TS, Fronza E, Roque-Specht VF, Valduga E, Albrecht F, Poletto G, Barros NM (2013) Life cycle of Agrotis malefida (Lepidoptera: Noctuidae): a diapausing cutworm. Zoologia (curitiba) 30(4):371–378

    Article  Google Scholar 

  • Specht A, Sosa-Gomez DR, Rios DA, Claudino VC, Paula-Moraes SV, Malaquias JV, Silva FA, Roque-Specht VF (2021) Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae) in Brazil: the big outbreak monitored by light traps. Neotrop Entomol 50(1):53–67

    Article  Google Scholar 

  • Spitzer K (1972) Seasonal adult activity of Scotia ipsilon Hfn. (Lepidoptera, Noctuidae) in Bohemia. Acta Entomol Bohemos 69:396–400

    Google Scholar 

  • Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodivers Sci 15(4):365–372

    Article  Google Scholar 

  • Wilson S (2014) Pathway-initiated pest risk analysis on onion bulbs (Allium cepa) from Argentina to Jamaica, 2009 reviewed 2014. Ministry of Agriculture & Fisheries, Jamaica

    Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–39

    Article  Google Scholar 

Download references

Acknowledgements

G.S.B. and G. O. thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Facultad de Ciencias Exactas y Naturales (UNLPam) for providing workspace and equipment. F.M.S.D. thanks for post-doctoral fellowships provided by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (Edital Capes-Embrapa 15/2014—Proposta 92 and PNPD/CAPES – PGENTO/UFPR) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (processo 409084/2017-4). G.S.B. thanks the Agencia Nacional de Promoción Científica y Tecnológica (PICT-2016-0588 and PICT-2017-3074), the Universidad Nacional de La Pampa (POIRE-2016-17); A.S. thanks the CNPq (403376/2013-0) and Embrapa (SEG MP2 02.13.14.006.00.00) and to CNPq for scientific productivity fellowship (312901/2020-8) for financial support. A.S. is also grateful to ICMBio—MMA, for the Authorizations for Scientific Activities in Brazil (SISBIO 48218-3 and 38547/6).

Funding

G.S.B. thanks the Agencia Nacional de Promoción Científica y Tecnológica (PICT-2016–0588 and PICT-2017–3074), the Universidad Nacional de La Pampa (POIRE-2016–17); A.S. thanks the CNPq (403376/2013–0) and Embrapa (SEG MP2 02.13.14.006.00.00), and to CNPq for scientific productivity fellowship (312901/2020–8) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: G. San Blas; data collection: F.M.S. Dias, G. San Blas; methodology: G. Obholz, G. San Blas; writing: G. San Blas, F.M.S. Dias, A. Specht, M.M. Casagrande, O.H.H. Mielke, G. Obholz.

Corresponding author

Correspondence to Germán San Blas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Edited by Denise Návia

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San Blas, G., Obholz, G., Dias, F.M.S. et al. Global Potential Distribution of the South American Cutworm Pest Agrotis robusta (Lepidoptera: Noctuidae). Neotrop Entomol 51, 188–198 (2022). https://doi.org/10.1007/s13744-021-00930-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-021-00930-x

Keywords

Navigation