Skip to main content

Advertisement

Log in

Biosynthesized Gold Nanoparticles Integrated Ointment Base for Repellent Activity Against Aedes aegypti L

  • Medical and Veterinary Entomology
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The present study focused on preparing a nano-ointment base integrated with biogenic gold nanoparticles from Artemisia vulgaris L. leaf extract. As prepared, nano-ointment was characterized by using Fourier-transform infrared spectroscopy, and the morphology of the nano-ointment was confirmed through a scanning electron microscope. Initially, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide results showed nano-ointment cytocompatibility at different concentrations (20–200 μg/mL) against L929 cells. The in vitro hemolysis assay also revealed that the nano-ointment is biocompatible. Further studies confirmed that nano-ointment has repellent activity with various concentrations (12.5, 25, 50, 75, and 100 ppm). At 100 ppm concentration, the highest repellent activity was observed at 60-min protection time against the Aedes aegypti L. female mosquitoes. The results indicated that the increasing concentration of nano-ointment prolongs the protection time. Moreover, the outcome of this study provides an alternative nano-ointment to synthetic repellent and insecticides after successful clinical trials. It could be an eco-friendly, safer nano-bio repellent, which can protect from dengue fever mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Syed F, Shah A, Khan Z, Tahir K, Khan AU, Yuan Q (2015) Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv 5(90):73793–73806

    CAS  Google Scholar 

  • Allen L, Ansel HC (2013) Ansel’s pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins

    Google Scholar 

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes Anopheles and Culex larvae (Diptera, Culicidae). Para Res 99(4):466–472

    Google Scholar 

  • Babu PJ, Das RK, Kumar A, Bora U (2011) Microwave-mediated synthesis of gold nanoparticles using coconut water. Inter J Gr Nanotech 3(1):13–21

    CAS  Google Scholar 

  • Babu PJ, Sharma P, Saranya S, Bora U (2013) Synthesis of gold nanoparticles using ethonolic leaf extract of Bacopa monnieri and UV irradiation. Mat Let 93:431–434

    CAS  Google Scholar 

  • Benner JP (1993) Pesticidal compounds from higher plants. Pest Sci 39(2):95–102

    Google Scholar 

  • Caballero-Gallardo K, Olivero-Verbel J, Stashenko EE (2012) Repellency and toxicity of essential oils from Cymbopogon martinii, Cymbopogon flexuosus and Lippia origanoides cultivated in Colombia against Tribolium castaneum. J St pro REs 50:62–65

    CAS  Google Scholar 

  • Crooks RM, Lemon BI, Sun L, Yeung L K, Zhao M (2001). Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications. In Dendrimers III (pp. 81–135). Springer Berlin Heidelberg.

  • Divya G, Panonnummal R, Gupta S, Jayakumar R, Sabitha M (2016) Acitretin and aloe-emodin loaded chitin nanogel for the treatment of psoriasis. Eu J Pharm Biopharm 107:97–109

    CAS  Google Scholar 

  • Dua VK, Alam MF, Pandey AC, Rai S, Kaul CAK, VK, Dash AP, (2008) Insecticidal activity of Valeriana jatamansi (Valerianaceae) against mosquitoes. J a Mos Con Asso 24(2):315–318

    CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nano Biotech 3(1):6

    Google Scholar 

  • Govindarajan M, Rajeswary M, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016a) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobio b: Bio 161:482–489

    CAS  Google Scholar 

  • Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016b) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Vet Sci Res J 107:95–101

    CAS  Google Scholar 

  • Gu HJ, Cheng SS, Huang CG, Chen WJ, Chang ST (2009) Mosquito larvcidal activities of extractives from black heartwood-type Cryptomeria japonica. Para Res 105(5):1455–1458

    Google Scholar 

  • Hwang YS, Wu KH, Kumamoto J, Axelrod H, Mulla MS (1985) Isolation and identification of mosquito repellents in Artemisia vulgaris. J Chem Ecol 11(9):1297–1306

    CAS  PubMed  Google Scholar 

  • Jayakumar R, Nair A, Rejinold NS, Maya S, Nair SV (2012) Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbo Poly 87(3):2352–2356

    CAS  Google Scholar 

  • Kapoor LD (2000) In: CRC Handbook of ayurvedic medicinal plants. CRC Press, Boca Raton, Florida, p 53

    Google Scholar 

  • Kaushik R, Mann AS, Sandhu BS, Parihar VBS (2012) Green synthesis of gold nanoparticles using Toona ciliata methanol bark extract and their characterization. Int Res J Pharm 3(9):115–119

    Google Scholar 

  • Kettel MJ, Dierkes F, Schaefer K, Moeller M, Pich A (2011) Aqueous Nanogels Modified with Cyclodextrin Poly 52(9):1917–1924

    CAS  Google Scholar 

  • Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A (2013) Gold nanoparticle–protein agglomerates as versatile nanocarriers for drug delivery. Small 9(20):3494–3505

    CAS  PubMed  Google Scholar 

  • Khater HF (2017). Introductory chapter: back to the future-solutions for parasitic problems as old as the pyramids. Natural Remedies in the Fight against Parasites, 5–7.

  • Khater HF, Selim AM, Abouelella GA, Abouelella NA, Murugan K., Vaz NP, Govindarajan M (2019). Commercial mosquito repellents and their safety concerns. In Malaria. Intech Open. DOI: http://dx.doi.org/https://doi.org/10.5772/intechopen.87436.

  • Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review. Chem Soc Rev 40(3):1647–1671

    CAS  PubMed  Google Scholar 

  • Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotech Rep 4:42–49

    CAS  Google Scholar 

  • Kumar KP, Paul W, Sharma CP (2011) Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Pro Biochem 46(10):2007–2013

    CAS  Google Scholar 

  • Lambert JDH, Campbell G, Arnason JT, Majak W (1991) Herbicidal properties of alpha-terthienyl, a naturally occurring phototoxin. Can J Pl Sci 71(1):215–218

    CAS  Google Scholar 

  • Magro M, Bramuzzo S, Baratella D, Ugolotti J, Zoppellaro G, Chemello G, Olivotto I, Ballarin C, Radaelli G, Arcaro B, De Liguoro M (2019) Self-assembly of chlorin-e6 on γ-Fe2O3 nanoparticles: application for larvicidal activity against Aedes aegypti. J Photochem Photobiol 194:21–31. https://doi.org/10.1016/j.jphotobiol.2019.03.004

    Article  CAS  Google Scholar 

  • Mangalathillam S, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R (2012) Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanosc 4(1):239–250

    CAS  Google Scholar 

  • Mateo D, Morales P, Ávalos A, Haza AI (2015) Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. J Exp Nanosci 10(18):1401–1417

    CAS  Google Scholar 

  • MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Coll Surf b Biointer 85(2):360–365

    CAS  Google Scholar 

  • Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Alarfaj AA (2015) Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114(10):3601–3610

    PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Advan in Coll Inter Sci 156(1):1–13

    CAS  Google Scholar 

  • Nentwig G (2003) Use of repellents as prophylactic agents. Parasitol Res 90:S40–S48

    PubMed  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko EE (2009) Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais motschulsky (Coleoptera). J St pro REs 45(3):212–214

    CAS  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Para Res 111(6):2241–2251

    Google Scholar 

  • Phasomkusolsil S, Soonwera M (2011). Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). A. Pac. J. Trop. Biomed. 1(1), 113–118.

  • Ram PR, Mehrotra MN (1995) Compendium of Indian medicinal plants. Publication and Information Directorate, CSIR, New Delhi 4(1985–1989):74

    Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Canale A (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38

    CAS  PubMed  Google Scholar 

  • Sathishkumar G, Jha PK, Vignesh V, Rajkuberan C, Jeyaraj M, Selvakumar M, Sivaramakrishnan S (2016) Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. Journal of Mol Liquids 215:229–236

    Google Scholar 

  • Seddiek SA, Ali MM, Khater HF, El-Shorbagy MM (2011) Anthelmintic activity of the white wormwood, Artemisia herba-alba against Heterakis gallinarum infecting turkey poults. J Med Plants Res 5(16):3946–3957

    Google Scholar 

  • Singh NP, Chowdhery HJ (2002) Biodiversity conservation in India. In: Das AP (ed) Perspective of plant biodiversity. North Bengal University, West Bengal, India, Department of Botany, pp 501–527

    Google Scholar 

  • Soonwera M (2015). Larvicidal and oviposition deterrent activities of essential oils against house fly (Musca domestica L.; Diptera: Muscidae). J. Agri. Tech. 11(3), 657–667.

  • Sundararajan B, RanjithaKumari BD (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. T El Med Bio 43:187–196

    CAS  Google Scholar 

  • Tomuleasa C, Soritau O, Orza A, Dudea M, Petrushev B, Mosteanu O, Kacso G (2012). Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastro. Liv Dis. 21(2).

  • Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phy Res 19(4):303–309

    CAS  Google Scholar 

  • Uboldi C, Bonacchi D, Lorenzi G, Hermanns MI, Pohl C, Baldi G, Kirkpatrick CJ (2009) Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Part Fib Tox 6(1):18

    Google Scholar 

  • Wang J, Zhu F, Zhou XM, Niu CY, Lei CL (2006) Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 42(3):339–347

    CAS  Google Scholar 

  • World Health Organization, Special Programme for Research, Training in Tropical Diseases, World Health Organization. Department of Control of Neglected Tropical Diseases, World Health Organization. Epidemic, & Pandemic Alert., 2009. Dengue: guidelines for diagnosis, treatment, prevention and control. WHO.

  • Zhu J, Zeng X, Liu T, Qian K, Han Y, Xue S, Zhang A (2006) Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J a Mos Con Asso 22(3):515–522

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.S. and B.D.R.K. conceived of the idea of the work. B.S. developed the study, performed the wrote the main manuscript. B.S., G.S., P.S., and S.S. carried out the experiments. A.K.M., S.M., A.T., and E.J. analyzed data interpretation. A.A.S.B.M., V.D.S., and Z.Z. revised the manuscript contents. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Balasubramani Sundararajan or Zhiqin Zhou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Edited by Rodrigo Gurgel Gonçalves

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundararajan, B., Sathishkumar, G., Seetharaman, P.k. et al. Biosynthesized Gold Nanoparticles Integrated Ointment Base for Repellent Activity Against Aedes aegypti L. Neotrop Entomol 51, 151–159 (2022). https://doi.org/10.1007/s13744-021-00920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-021-00920-z

Keywords

Navigation