Skip to main content
Log in

Spatio-temporal variation in voltinism of insect pests: sensitivity to location and temperature anomalies

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The development, survival, and reproduction of ectothermic organisms such as insects are strongly influenced by temperature. Because insects respond to temperature by accelerating or reducing their development rate, population growth is directly associated with temperature variations. Here, daily minimum and maximum temperatures and degree-day model approaches were used to estimate the number generation per year (voltinism) of Mythimna sequax Franclemont, Neoleucinodes elegantalis (Guenée), Spodoptera cosmioides (Walker), and Spodoptera eridania (Cramer) over a 34-year period in southern Brazil. Additionally, we assessed the effects of El Niño Southern Oscillation (ENSO) events on voltinism. While an increased number of generations were estimated in warmer regions, comprising mainly northwestern Paraná, fewer generations were estimated in the colder regions of Santa Catarina and Rio Grande do Sul. For all species, the location was the factor that explained most of the variation observed in voltinism (average of 76.9%). Inter-annual changes in voltinism also varied depending on location, and differences of up to five generations among years were obtained in colder regions. On the other hand, ENSO events had a minor influence on the species voltinism. Our findings provide an important contribution to the understanding of spatio-temporal variations in voltinism of insects, and how temperature changes may increase their population growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc B 277:1281–1287

    PubMed  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Google Scholar 

  • Bavaresco A, Garcia MS, Grützmacher AD, Foresti J, Ringenberg R (2002) Biologia e exigências térmicas de Spodoptera cosmioides (Walk.) (Lepidoptera: Noctuidae). Neotrop Entomol 31:49–54

    Google Scholar 

  • Bayoh MN, Lindsay SW (2003) Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res 93:375–381

    CAS  PubMed  Google Scholar 

  • Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience 60:602–613

    Google Scholar 

  • Borchert DM, Stinner RE, Walgenbach JF, Kennedy GG (2004) Oriental fruit moth (Lepidoptera: Tortricidae) phenology and management with methoxyfenozide in North Carolina apples. J Econ Entomol 97:1353–1364

    CAS  PubMed  Google Scholar 

  • Brattsten LB, Samuelian JH, Long KY, Kincaid SA, Evans CK (1983) Cyanide as a feeding stimulant for the southern armyworm, Spodoptera eridania. Ecol Entomol 8:125–132

    Google Scholar 

  • Braune E, Richter O, Söndgerath D, Suhling F (2008) Voltinism flexibility of a riverine dragonfly along thermal gradients. Glob Chang Biol 14:470–482

    Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:419–423

    Google Scholar 

  • Cizek L, Fric Z, Konvicka M (2006) Host plant defences and voltinism in European butterflies. Ecol Entomol 31:337–344

    Google Scholar 

  • Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environment. Annu Rev Entomol 60:123–140

    CAS  PubMed  Google Scholar 

  • Coll M, Wajnberg E (2017) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. Wiley, Chichester

    Google Scholar 

  • Damos PT, Kouloussis NA, Koveos DS (2018) A degree-day phenological model for Cydia pomonella and its validation in a Mediterranean climate. Bull Insectology 1:131–142

    Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merril SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:916–919

    CAS  PubMed  Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706

    CAS  PubMed  Google Scholar 

  • ESRI (2012) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Estay S, Lima M (2010) Combined effect of ENSO and SAM on the population dynamics of the invasive yellow jacket wasp in central Chile. Popul Ecol 52:289–294

    Google Scholar 

  • Everall NC, Johnson MF, Wilby RL, Bennett CJ (2015) Detecting phenology change in the mayfly Ephemera danica: responses to spatial and temporal water temperature variations. Ecol Entomol 40:95–105

    Google Scholar 

  • Fan Y, Groden E, Drummond FA (1992) Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinelidae) under constant and variable temperatures. J Econ Entomol 85:1762–1770

    Google Scholar 

  • Foerster LA (1996) Efeito da temperatura no desenvolvimento das fases imaturas de Pseudaletia sequax Franclemont (Lepidoptera: Noctuidae). An Soc Entomol Bras 25:27–32

    Google Scholar 

  • Fontolan M, Xavier ACF, Pereira HR, Blain GC (2019) Using climate change models to assess the probability of weather extremes events: a local scale study based on the generalized extreme value distribution. Bragantia 78:146–157

    Google Scholar 

  • Forrest RK (2016) Complex response of insect phenology to climate change. Curr Opin Insect Sci 17:49–54

    PubMed  Google Scholar 

  • Gan J (2004) Risk and damage of southern pine beetle outbreaks under global climate change. Forest Ecol Manag 191:61–71

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Paleogeogr Paleoclimatol Paleoecol 281:180–195

    Google Scholar 

  • Hansen BB, Grøtan V, Herfinal I, Lee AM (2020) The Moran effect revisited: sparial population synchrony under climate warming. Ecography 43:1591–1602

    Google Scholar 

  • Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M (2018) Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front Plant Sci 1445:1–10

    Google Scholar 

  • Huffaker CB, Berryman A, Turchin P (1999) Dynamics and regulation of insect populations. In: Huffaker CB, Gutierrez AP (eds) Ecological Entomology. Wiley, New York, pp 269–305

    Google Scholar 

  • IBGE (2020) Sistema IBGE de recuperação automática. https://sidra.ibge.gov.br/tabela/1612. Accessed 09 Dec 2020.

  • Irlich UM, Terblanche JS, Blackburn TM, Chown SL (2009) Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. Am Nat 174:819–835

    PubMed  Google Scholar 

  • Jacques F, Sampaio F, Santos HT, Marchioro CA (2019) Climate change and voltinism of Mythimna sequax: the location and choice of phenological models matter. Agr Forest Entomol 21:431–444

    Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subartic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264

    PubMed  Google Scholar 

  • Kim DS, Lee JH, Yiem MS (2001) Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its emergence models. Environ Entomol 30:298–305

    Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Google Scholar 

  • Li W, Zhang P, Ye J, Li L, Baker PA (2011) Impact of two different types of El Niño events on the Amazon climate and ecosystem productivity. J Plant Ecol 4:91–99

    Google Scholar 

  • Lindestad O, Wheat CW, Nulin S, Gotthard K (2019) Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Ecology 100:e02550

    PubMed  Google Scholar 

  • Logan JA, Wollkind DL, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140

    Google Scholar 

  • Maiorano A (2012) A physiologically based approach for degree-day calculation in pest phenology models: the case of the European Corn Borer (Ostrinia nubilalis Hbn.) in Northern Italy. Int J Biometeorol 56:653–659

    PubMed  Google Scholar 

  • Marchioro CA, Krechemer FS, Foerster LA (2017) Estimating the development rate of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), using linear and non-linear models. Pest Manag Sci 77:1486–1493

    Google Scholar 

  • Marchioro CA, Krechemer FS, Moraes CP, Foerster LA (2016) A stochastic model for predicting the stage emergence of Plutella xylostella under field conditions. Ann Appl Biol 169:190–199

    Google Scholar 

  • Mazzarella A, Giuliacci A, Scafetta N (2013) Quantifying the multivariate ENSO Index (MEI) coupling to CO2 concentration and to the length of day variations. Theor Appl Climatol 111:601–607

    Google Scholar 

  • Michereff-Filho M, Torres JB, Andrade LNT, Nunes MUC (2008) Effect of some biorational insecticides on Spodoptera eridania in organic cabbage. Pest Manag Sci 64:761–767

    CAS  PubMed  Google Scholar 

  • Moraes CP, Foerster LA (2014) Development and reproduction of Neoleucinodes elegantalis (Lepidoptera: Crambidae) on tomato (Solanum licopercum) cultivars. Rev Colomb Entomol 40:40–43

    Google Scholar 

  • Moran PAP (1953) The statistical analysis of the Canadian lynx cycle. Aust J Zool 1:291–298

    Google Scholar 

  • Morton EM, Rafferty N (2017) Plant-pollinator interactions under climate change: the use of spatial and temporal transplants. Appl Plant Sci 5:1600133

    Google Scholar 

  • Murray MS (2008) Using degree-days to time treatments for insect pests. Logan, UT, USA: Utah State University Extension and Utah Plant Pest Diagnostic Laboratory, IPM 05-08, Utah, p 5

  • Paajimans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB (2013) Temperature variation makes ectotherms more sensitive to climate change. Glob Chang Biol 19:2373–2380

    Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agr Forest Entomol 57:221–240

    Google Scholar 

  • Quinn BK (2017) A critical review of the use and performance of different function types for modeling temperature-dependent development of arthropod larvae. J Therm Biol 63:65–77

    PubMed  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasmussen NL, Van Akken BG, Rudolf VHW (2014) Linking phenological shifts to species interactions through size-mediated priority effects. J Anim Ecol 83:1206–1215

    PubMed  Google Scholar 

  • Rebaudo F, Rabhi VB (2018) Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol Exp Appl 166:607–617

    Google Scholar 

  • Rice RE, Weakley CV, Jones RA (1984) Using degree-days to determine optimum spray timing for the oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol 77:698–700

    Google Scholar 

  • Roltsch WJ, Zalom FG, Strawn AJ, Strand JF, Pitcairn MJ (1999) Evaluation of several degree-day estimation methods in California climates. Int J Biometeorol 42:169–176

    Google Scholar 

  • Saldaña S, Lima M, Estay S (2007) Northern Atlantic Oscillation effects on the temporal and spatial dynamics of green spruce aphid populations in the UK. J Anim Ecol 76:782–789

    PubMed  Google Scholar 

  • Sampaio F, Marchioro CA, Krechemer FS (2020) Temperature-dependent development models describing the effects of temperature on the development of Spodoptera eridania. Pest Manag Sci 77:919–929. https://doi.org/10.1002/ps.6101

    Article  CAS  PubMed  Google Scholar 

  • Santos KBD, Menegum AM, Santos WJ, Neves PMOJ, Santos RB (2010) Caracterização dos danos de Spodoptera eridania (Cramer) e Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) a estruturas de algodoeiro. Neotrop Entomol 39:626–631

    PubMed  Google Scholar 

  • Santoso A, Mcphaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the Strong 2015/2016 El niño. Rev Geophys 55:1079–1129

    Google Scholar 

  • Schindler DE, Armstrong JB, Reed TE (2015) The portfolio concept in ecology and evolution. Front Ecol Environ 13:257–263

    Google Scholar 

  • Snyder RL (2005) DEGDAY. Regents of the University of California. Davis, California

    Google Scholar 

  • Srinivasa Rao M, Dammu M, Sengottaiyan V, Ongolu S, Biradar AK, Kondru VR, Karlapudi S, Bellapukonda MKR, Chitiprolu RRA, Cherukumalli SR (2016) Prediction of Helicoverpa armigera Hübner on pigeonpea during future climate change periods using MarkSim multimodel data. Agric For Meteorol 229:130–138

    Google Scholar 

  • Srinivasa Rao M, Swathi P, Rao CAR (2015) Model and scenario variations in predicted number of generations of Spodoptera litura fab. on peanut during future climate change scenario. PLoS One 10:e0116762

    PubMed Central  Google Scholar 

  • Tenow O, Nilssem AC, Holmgren B, Elverum F (1999) An insect (Argyresthia retinella, Lep. Yponomeutidae) outbreak in northern birch forest, released by climatic changes? J Appl Ecol 36:111–122

    Google Scholar 

  • Teodoro AV, Procópio SO, Bueno AF, Negrisoli Junior AS, Carvalho HWL, Negrisoli CRCB, Brito LF, Guzzo EC (2013) Spodoptera cosmioides (Walker) e Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae): novas pragas de cultivos da região nordeste. Comunicado Técnico 131:1–7

    Google Scholar 

  • Walter JA, Sheppard LW, Venugopal PD, Reuman DC, Dively G, Tooker JF, Johnson DM (2019) Weather and regional crop composition variation drive spatial synchrony of lepidopteran agricultural pests. Ecol Entomol 45:573–582

    Google Scholar 

  • Williams DW, Liebhold AM (1995) Forest defoliators and climatic change - potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gipsy moth (Lepidoptera: Lymantridae). Environ Entomol 24:1–9

    Google Scholar 

  • Woli P, Ortiz BV, Buntin D, Flanders K (2014) El Niño-Southern Oscilation (ENSO) effects on Hessial fly (Diptera: Cecidomyiidae) infestation in the southeastern United States. Environ Entomol 43:1641–1649

    CAS  PubMed  Google Scholar 

  • Xavier AC, King CW, Scanlon BR (2016) Daily gridded meteorological variables in Brazil (1980-2013). Int J Climatol 36:2644–2659

    Google Scholar 

  • Zalom FG, Goodel PB, Wlsson LT, Barnett WW, Bentley WJ (1983) Degree-days: the calculation and use of heat units in pest management. University of California, Berkeley

    Google Scholar 

  • Zeuss D, Brunzel S, Brandl R (2017) Environmental drivers of voltinism and body size in insect assemblages across Europe. Glob Ecol Biogeogr 26:154–165

    Google Scholar 

  • Ziter C, Robinson EA, Jonathan NA (2012) Climate change and voltinism in California insect pest species: sensitivity to location, scenario and model choice. Glob Chang Biol 18:2771–2780

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Alexandre ten Caten for authorizing the use of ArcGIS and the Santa Catarina Government for the Master’s degree scholarship provided for Fábio Sampaio.

Funding

The Brazilian National Council for Scientific and Technological Development (CNPq) provided financial support for Cesar Augusto Marchioro (project number 408606/2018-5),

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. FS estimated the voltinism. FS and CAM analyzed the data. CAM generated the maps and figures. CAM, FS, and FSK wrote the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Flavia da Silva Krechemer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Edited by Eugenio E de Oliveira

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 787 kb)

ESM 2

(DOCX 1746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchioro, C.A., Sampaio, F. & da Silva Krechemer, F. Spatio-temporal variation in voltinism of insect pests: sensitivity to location and temperature anomalies. Neotrop Entomol 50, 208–217 (2021). https://doi.org/10.1007/s13744-021-00848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-021-00848-4

Keywords

Navigation