Skip to main content

Advertisement

Log in

The Past and Current Potential Distribution of the Fruit Fly Anastrepha obliqua (Diptera: Tephritidae) in South America

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Anastrepha obliqua (Macquart) is an agricultural pest of wide geographic distribution infesting a vast list of host species in America. However, little is known about the past geographic distribution of this species. In this study, we investigated the potential past and current distribution of species in South America. In this sense, the MaxEnt algorithm was used to model the ecological niche of the species in the past (Last Interglcial Maximum; Last Glacial Maximum) and current periods. The results suggested that under the current climatic conditions, A. obliqua showed high environmental suitability to become established in most South American countries, especially in Brazil. The lowest suitability indices were observed in Chile, Argentina, and Uruguay. The past analysis for Last Glacial Maximum revealed that there was no significant change in the distribution potential of the species when compared to the current model; however, in the Last Interglacial Maximum period, there was a large reduction in the areas of suitability for the species when compared to the current and Last Glacial Maximum distribution models. The analysis also revealed vast areas of refuges for the species mainly on the coast of Brazil, as well as Venezuela, Bolivia, Guyana, and Surinam. The results presented here may be useful for future phylogeographical studies in order to test if the refuge areas concentrate greater genetic diversity for this species. In addition, our study provides important information for understanding the current dynamics of A. obliqua, which may be useful for control programs in places where this species can become a pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Ab’Saber AN (1983) O domínio dos cerrados: introdução ao conhecimento. Revista do Service Público 111:41–55

    Google Scholar 

  • Aguirre-Ramirez EJ, Velasco-Cuervo SM, Gallo-Franco JJ, Gonzáles R, Carrejo NS, Toro-Perea N (2017) Genetic diversity and population structure of Anastrepha obliqua in southwestern Colômbia. Entomol Exp Appl 164(3):291–304. https://doi.org/10.1111/eea.12613

    Article  Google Scholar 

  • Aleixo A, Albernaz AL, Grelle CEV, Vale MM, Rangel TF (2010) Mudanças climáticas e a biodiversidade dos biomas brasileiros: Passado presente e futuro. Nat Conserv 8(2):194–196. https://doi.org/10.4322/natcon.00802016

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37(7):1378–1393. https://doi.org/10.1111/j.1365-2699.2010.02290.x

    Article  Google Scholar 

  • Auler AS, Wang X, Edwards RL, Cheng H, Cristalli OS, Smart PL, Richards DA (2004) Quarternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat Sci 19(7):693–701. https://doi.org/10.1002/jqs.876

    Article  Google Scholar 

  • Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeor Palaecl 177(1–2):19–27. https://doi.org/10.1016/S0031-0182(01)00349-2

    Article  Google Scholar 

  • Behling H, Arz HW, Wefer G (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil inferences from marine core GeoB 3104-1. Quat Sci Rev 19:981–994

    Article  Google Scholar 

  • Brown KS Jr (1977) Centros de evolução refúgios quaternários e conservação de patrimônios genéticos na região neotropical: padrões de diferenciação em Ithomiinae (Lepidoptera: Nymphalidae). Acta Amaz 7(1):75–13

    Article  Google Scholar 

  • Brown KS Jr, Ab’Saber AN (1979) Ice-age forest refuges and evolution in the Neotropics: correlation of paleoclimatological geomorphological and pedological data with modern biological endemism. Paleoclima 5:1–30

    Google Scholar 

  • Brown KS, Sheppard PM, Turner JRG (1974) Quaternary refugia in tropical America: evidence from race formation in Heliconius butterflies. Proc R Soc Lond B 187(1088):369–378

    Article  Google Scholar 

  • Carnaval AC, Bates JM (2007) Amphibian DNA shows marked genetic structure and tracks Pleistocene climate change in northeastern Brazil. Evolution Int J Org Evolution 61(12):2942–2957

    Article  CAS  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35(7):1187–1201

    Article  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323(5915):785–789. https://doi.org/10.1126/science.1166955

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AF, Del Lama MA (2015) Predicting priority areas for conservation from historical climate modeling: stingless bees from Atlantic Forest hotspot as a case study. J Insect Conserv 19(3):581–587. https://doi.org/10.1007/s10841-015-9780-7

    Article  Google Scholar 

  • Castañeda MR, Selivon D, Hernández-Ortiz V, Soto A, Canal NA (2015) Morphometric divergence in populations of Anastrepha obliqua (Diptera: Tephritidae) from Colombia and some Neotropical locations. ZooKeys 2015(540):61–81. https://doi.org/10.3897/zookeys.540.6013

    Article  Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, D’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat 4:1411. https://doi.org/10.1038/ncomms2415

    Article  CAS  Google Scholar 

  • Congrains C, Henry DAW, Abalaka J, Carvalho F, Miranda EA, Cumming GS, Henry DAW, Manu AS, Abalaka J, Rocha CD, Diop MS (2016) Genetic and paleomodelling evidence of the population expansion of the cattle egret Bubulcus ibis in Africa during the climatic oscillations of the Late Pleistocene. J Avian Biol 47(6):846–857. https://doi.org/10.1111/jav.00972

    Article  Google Scholar 

  • Da Silva PAH (2008) A Teoria dos Refúgios Florestais e sua relação com a extinção da megafauna pleistocênica: um estudo de caso. Estudos Geográficos: 5(1):121–134

    Google Scholar 

  • De Meyer M, Robertson MP, Peterson AT, Mansell MW (2008) Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J Biogeogr 35(2):270–281

    Google Scholar 

  • De Meyer M, Robertson MP, Mansell MW, Ekesi S, Tsuruta K, Mwaiko W, Vayssières J-F, Peterson AT (2010) Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera Tephritidae). Bull Entomol Res 100(1):35–48

    Article  Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Article  Google Scholar 

  • Fu L, Li ZH, Huang GS, Wu XX, Ni WL, Qü WW (2014) The current and future potential geographic range of West Indian fruit fly Anastrepha obliqua (Diptera: Tephritidae). Insect Sci 21(2):234–244. https://doi.org/10.1111/1744-7917.12018

    Article  PubMed  Google Scholar 

  • Geng J, Li ZH, Wan FH, Wang ZL (2008) Analysis of the suitability of Mexican fruit fly Anastrepha ludens in China. Plant Prot 34:93–98

    Google Scholar 

  • Geng J, Li ZH, Rajotte EG, Wan FH, Lu XY, Wang ZL (2011) Potential geographical distribution of Rhagoletis pomonella (Diptera: Tephritidae) in China. Insect Sci 18(5):575–582

    Article  Google Scholar 

  • Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131. https://doi.org/10.1016/j.ecolmodel.2012.06.035

    Article  Google Scholar 

  • Gotelli NJ, Anderson MJ, Arita HT, Chao A, Colwell RK, Connolly SR, Currie DJ, Dunn RR, Graves GR, Green JL, Grytnes J-A, Jiang Y-H, Jetz W, Lyons SK, McCain CM, Magurran AE, Rahbek C, Rangel TFLVB, Soberón J, Wedd CO, Willig MR (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecol Lett 12(9):873–886

    Article  Google Scholar 

  • Haffer J (1969) Speciation in Amazonian Forest Birds. Science 165(3889):131–137. https://doi.org/10.1126/science.165.3889.131

    Article  CAS  PubMed  Google Scholar 

  • Haffer J (1977) Pleistocene speciation in Amazonian birds. Amazoniana 6(2):161–192

    Google Scholar 

  • Haffer J, Prance GT (2002) Impulsos climáticos da evolução na Amazônia durante o Cenozóico: sobre a teoria dos Refúgios da diferenciação biótica. Estudos Avançados 16(46):175–206. https://doi.org/10.1590/S0103-40142002000300014

    Article  Google Scholar 

  • Hernández-Ortiz V, Aluja M (1993) Listado de especies del género neotropical Anastrepha (Diptera: Tephritidae) con notas sobre su distribucion y plantas hospederas. Folia Entomol Mex 88:89–105

    Google Scholar 

  • Hijmans RJ, van Etten J (2014) Raster: geographic data analysis and modeling. 2015. R package version 2: 4-18.

  • Hou BH, Zhang RJ (2005) Potential distributions of the fruit fly Bactrocera dorsalis (Diptera: Tephritidae) in China as predicted by CLIMEX. Acta Ecol Sin 25:1569–1574

    Google Scholar 

  • Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). PNAS 99(9):6112–6117. https://doi.org/10.1073/pnas.092538699

    Article  CAS  PubMed  Google Scholar 

  • Irfan-Ullah M, Amarnath G, Murthy MSR, Peterson AT (2006) Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modeling, p.16:1917-1925. In Plant Conservation and Biodiversity, 351p

  • Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297(5586):1548–1551

    Article  CAS  Google Scholar 

  • Jetz W, Rahbek C, Colwell RK (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemismo. Ecol Lett 7(12):1180–1191. https://doi.org/10.1111/j.1461-0248.2004.00678.x

    Article  Google Scholar 

  • Johnson DDP, Hay SI, Rogers DJ (1998) Contemporary environmental correlates of endemic bird areas derived from meteorological satellite sensors. Proc R Soc Lond B Biol Sci 265:951–959

    Article  Google Scholar 

  • Lv WG, Lin W, Li ZH, Geng J, Wan FH, Wang ZL (2008) Potential geographic distribution of Ber fruit fly Carpomya vesuviana Costa in China. Plant Quarent 22:343–347 (in Chinese)

    Google Scholar 

  • Martins FDEM (2011) Historical biogeography of the Brazilian Atlantic forest and the Carnaval – Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biol J Linn Soc 104:499–509. https://doi.org/10.1111/j.1095-8312.2011.01745.x

    Article  Google Scholar 

  • Miranda EA, Carvalho AF, Silva CI, Del Lama MA (2015) Natural history and biogeography of Partamona rustica an endemic bee in dry forests of Brazil. Insect Soc 62(3):255–263 Springer Basel. https://doi.org/10.1007/s00040-015-0400-z

    Article  Google Scholar 

  • Miranda EA, Batalha-filho H, Congrains C, Ferreira M, Del Lama MA, Carvalho AF (2016) Phylogeography of Partamona rustica (Hymenoptera: Apidae) an endemic stingless bee from the neotropical dry forest diagonal. PLoS One 11(10):e0164441. https://doi.org/10.1371/journal.pone.0164441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda EA, Ferreira KM, Carvalho AT, Martins CF, Fernandes CR, Del Lama MA (2017) Pleistocene climate changes shaped the population structure of Partamona seridoensis (Apidae: Meliponini) an endemic stingless bee from the Neotropical dry forest. PLoS One 12(4):e0175725

    Article  Google Scholar 

  • Miranda EA, Carvalho AT, Gomes-Miranda JJ, Souza CS, Costa MA (2019) Priority areas for conservation of orchid bees (Apidae, Euglossini) in the Atlantic Forest. J Insect Conserv 23(3):613–621. https://doi.org/10.1007/s10841-019-00155-9

    Article  Google Scholar 

  • Norrbom AL (2004) Fruit fly (Diptera: Tephritidae) speciesdatabase. http://www.sel.barc.usda.gov/diptera/Tephritidae

  • Norrbom AL, Korytkowski CA, Zucchi RA, Uramoto K, Venable GL, McCormick J, Dallwitz MJ (2012) Anastrepha and Toxotrypana: descriptions illustrations and interactive keys. DELTA-Description Language for Taxonomy. http://delta-intkey. com/anatox

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR (2015) O’Hara RB Simpson GL Solymos P Stevens MHH Wagner H. Vegan: Community Ecology Package 2: 0-10

  • Passos JF, Nascimento DB, Menezes RAT, Adaime R, Araujo EL, Lima KM, Zucchi RA, Ronchi-Teles B, Nascimento RR, Ruiz-Arce R, Barr NB, McPheron BA, Silva JG (2018) Genetic structure and diversity in Brazilian populations of Anastrepha obliqua (Diptera: Tephritidae). PLoS One 13(12):e0208997

    Article  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3-4):231–259

    Article  Google Scholar 

  • QGis DT (2011) Quantum GIS geographic information system. Open Source Geospatial Foundation Project 45

  • Qin Y, Paini DR, Wang C, Fang Y, Li Z (2015) Global establishment risk of economically important fruit fly species (Tephritidae). PLoS One 10(1):e0116424

    Article  Google Scholar 

  • Rosauer DAN, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18(19):4061–4072

    Article  Google Scholar 

  • Ruiz-Arce R, Barr NB, Owen CL, Thomas DB, McPheron BA (2012) Phylogeography of Anastrepha obliqua inferred with mtDNA sequencing. J Econ Entomol 105(6):2147–2160. https://doi.org/10.1603/EC12211

    Article  PubMed  Google Scholar 

  • Scally M, Into F, Thomas DB, Ruiz-Arce R, Barr NB, Schuenzel EL (2016) Resolution of inter and intra-species relationships of the West Indian fruit fly Anastrepha obliqua. Mol Phylogenet Evol 101:286–293

    Article  CAS  Google Scholar 

  • Siqueira MFD (2005) Uso de modelagem de nicho fundamental na avaliação do padrão de distribuição geográfica de espécies vegetais, Tese de Doutorado, Universidade de São Paulo, Escola de Engenharia de São Carlos, 107p

  • Smith-Caldas MRB, McPheron BA, Silva JG, Zucchi RA (2001) Phylogenetic relationships among species of the fraterculus group (Anastrepha: Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase I. Neotrop Entomol 30(4):565–573

    Article  CAS  Google Scholar 

  • Soley-Guardia M, Radosavljevic A, Rivera JL, Anderson RP (2014) The effect of spatially marginal localities in modelling species niches and distributions. J Biogeogr 41(7):1390–1401

    Article  Google Scholar 

  • Steck GJ (1999) Taxonomic Status of Anastrepha fraterculus 1064: 13-20 doi: https://doi.org/10.1017/CBO9781107415324.004

  • Weldon CW, Nyamukondiwa C, Karsten M, Chown SL, Terblanche JS (2018) Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Sci Rep 8(1):9849

    Article  Google Scholar 

  • Werneck FP, Nogueira C, Colli GR, Sites JW Jr, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas species richness and conservation in a biodiversity hotspot. J Biogeogr 39(9):1695–1706

    Article  Google Scholar 

  • White IM, Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomics. CAB International, 601p

Download references

Acknowledgments

RPS thanks the scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). JGS acknowledges her research grant (305452 / 2012-6) from CNPq. EAM thanks CNPq for his postdoctoral fellowship (154912/2016-6 and 151193/2019-3, PDJ-CNPq). JGS is a CNPq fellow.

Author Contribution Statement

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by EAM and RPDS. The first draft of the manuscript was written by all authors, which commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A Miranda.

Additional information

Edited by D F Segura – IGEOF-INTA, Argentina

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.P.D., Silva, J.G. & Miranda, E.A. The Past and Current Potential Distribution of the Fruit Fly Anastrepha obliqua (Diptera: Tephritidae) in South America. Neotrop Entomol 49, 284–291 (2020). https://doi.org/10.1007/s13744-019-00741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00741-1

Keywords

Navigation