Advertisement

Neotropical Entomology

, Volume 47, Issue 5, pp 709–715 | Cite as

Determination of the Genetic and Synergistic Suppression of a Methoxyfenozide-Resistant Strain of the House Fly Musca domestica L. (Diptera: Muscidae)

  • R M Shah
  • N Abbas
  • S A Shad
  • M Binyamin
Pest Management
  • 88 Downloads

Abstract

Musca domestica Linnaeus (house fly, Diptera: Muscidae) is a major veterinary and medical important pest all over the world. These flies have ability to develop resistance to insecticides. The present trial was performed to discover the inheritance mode (autosomal, dominance, number of genes involved) and preliminary mechanism of methoxyfenozide resistance in order to provide basic information necessary to develop resistance management strategy for this pest. A strain of M. domestica (MXY-SEL) was exposed to methoxyfenozide for 44 generations which developed a 5253.90-fold level of resistance to methoxyfenozide. The overlapping fiducial limits of LC50 values of the reciprocal crosses, F1 (MXY-SEL ♂ × Susceptible ♀) and F1 (MXY-SEL ♀ × Susceptible ♂), suggest that inheritance of methoxyfenozide resistance was an autosomal and likely completely dominant trait (DLC = 0.93 and 0.94 for F1 and F1, respectively). Backcrosses of the F1 with the parental MXY-SEL or Susceptible population predict a polygenic mode of inheritance. Piperonyl butoxide significantly altered the LC50 values, suggesting enhanced detoxification by cytochrome P450-dependent monooxygenases is a major mechanism of resistance to methoxyfenozide in the MXY-SEL strain. The estimated realized heritability was 0.07 for methoxyfenozide. These results would be helpful for the better management of M. domestica.

Keywords

Inheritance pattern, autosomal, realized heritability 

Notes

Acknowledgments

The authors are highly grateful to Prof. (Rtd.) Dr. Gerald Wilde and Prof. Dr. R. Jeff Whitworth, Kansas State University, USA, for the critical review of the manuscript to improve English language.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abbas N, Shad SA (2015) Assessment of resistance risk to lambda-cyhalothrin and cross-resistance to four other insecticides in the house fly, Musca domestica L. (Diptera: Muscidae). Parasitol Res 114:2629–2637CrossRefPubMedGoogle Scholar
  2. Abbas N, Khan HAA, Shad SA (2014a) Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitol Res 113:1343–1352CrossRefPubMedGoogle Scholar
  3. Abbas N, Khan HAA, Shad SA (2014b) Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 23:791–801CrossRefPubMedGoogle Scholar
  4. Abbas N, Crickmore N, Shad SA (2015a) Efficacy of insecticide mixtures against a resistant strain of house fly (Diptera: Muscidae) collected from a poultry farm. Int J Trop Insect Sci 35:48–53CrossRefGoogle Scholar
  5. Abbas N, Shad SA, Ismail M (2015b) Resistance to conventional and new insecticides in house flies (Diptera: Muscidae) from poultry facilities in Punjab, Pakistan. J Econ Entomol 108:826–833CrossRefPubMedGoogle Scholar
  6. Abbas N, Shad SA, Shah RM (2015c) Resistance status of Musca domestica L. populations to neonicotinoids and insect growth regulators in Pakistan poultry facilities. Pak J Zool 47:1663–1671Google Scholar
  7. Abbas N, Ijaz M, Shad SA, Binyameen M (2016a) Assessment of resistance risk to fipronil and cross resistance to other insecticides in the Musca domestica L. (Diptera: Muscidae). Vet Parasitol 223:71–76CrossRefPubMedGoogle Scholar
  8. Abbas N, Shah RM, Shad SA, Azher F (2016b) Dominant fitness costs of resistance to fipronil in Musca domestica Linnaeus (Diptera: Muscidae). Vet Parasitol 226:78–82CrossRefPubMedGoogle Scholar
  9. Afzal MBS, Ijaz M, Farooq Z, Shad SA, Abbas N (2015) Genetics and preliminary mechanism of chlorpyrifos resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae). Pestic Biochem Physiol 119:42–47CrossRefPubMedGoogle Scholar
  10. Bielza P, Quinto V, Fernandez E, Gravalos C, Abellan J, Cifuentes D (2008) Inheritance of resistance to acrinathrin in Frankliniella occidentalis (Thysanoptera: Thripidae). Pest Manag Sci 64:584–588CrossRefPubMedGoogle Scholar
  11. Bourguet D, Raymond M (1998) The molecular basis of dominance relationships: the case of some recent adaptive genes. J Evol Biol 11:103–122CrossRefGoogle Scholar
  12. Bouvier J, Charles BR, Boivin T, Boudinhon L, Beslay D, Sauphanor B (2001) Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity 87:456–462CrossRefPubMedGoogle Scholar
  13. Clavel A, Doiz O, Morales S, Varea M, Seral C, Castillo FJ, Fleta J, Rubio C, Gómez-Lus R (2002) House fly (Musca domestica) as a transport vector of Cryptosporidium parvum. Folia Parasitol 49:163–164CrossRefPubMedGoogle Scholar
  14. Denholm I, Rowland M (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37:91–112CrossRefPubMedGoogle Scholar
  15. Falconer DS (1989) Introduction to quantitative genetics. Longman, LondonGoogle Scholar
  16. Fasanella A, Scasciamacchia S, Garofolo G, Giangaspero A, Tarsitano E, Adone R (2010) Evaluation of the house fly Musca domestica as a mechanical vector for an anthrax. PLoS One 5:e12219CrossRefPubMedPubMedCentralGoogle Scholar
  17. Finney D (1971) A statistical treatment of the sigmoid response curve. Probit analysis, 3rd edn. Cambridge University Press, London, p 333Google Scholar
  18. Forster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, Pfeffer K (2007) Pilot study on synanthropic flies (eg Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol Res 101:243–246CrossRefPubMedGoogle Scholar
  19. IRAC (2016) IRAC mode of action classification (version 8.1).pp, 1-26.Google Scholar
  20. Jia B, Liu Y, Zhu YC, Liu X, Gao C, Shen J (2009) Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pest Manag Sci 65:996–1002CrossRefPubMedGoogle Scholar
  21. Khan H, Abbas N, Shad SA, Afzal MBS (2014a) Genetics and realized heritability of resistance to imidacloprid in a poultry population of house fly, Musca domestica L. (Diptera: Muscidae) from Pakistan. Pestic Biochem Physiol 114:38–43CrossRefPubMedGoogle Scholar
  22. Khan HAA, Akram W, Shad SA (2014b) Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop 130:148–154CrossRefPubMedGoogle Scholar
  23. Khan HAA, Akram W, Arshad M, Hafeez F (2016) Toxicity and resistance of field collected Musca domestica (Diptera: Muscidae) against insect growth regulator insecticides. Parasitol Res 115:1385–1390CrossRefPubMedGoogle Scholar
  24. Kristensen M, Jespersen JB (2003) Larvicide resistance in Musca domestica (Diptera: Muscidae) populations in Denmark and establishment of resistant laboratory strains. J Econ Entomol 96:1300–1306CrossRefPubMedGoogle Scholar
  25. Lande R (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99:541–553PubMedPubMedCentralGoogle Scholar
  26. LeOra S (2003) Polo plus, a user’s guide to Probit or logic analysis. LeOra Software, Berkeley, CAGoogle Scholar
  27. Moon R, Hinton J, O’Rourke S, Schmidt D (2001) Nutritional value of fresh and composted poultry manure for house fly (Diptera: Muscidae) larvae. J Econ Entomol 94:1308–1317CrossRefPubMedGoogle Scholar
  28. Mosallanejad H, Soin T, Smagghe G (2008) Selection for resistance to methoxyfenozide and 20-hydroxyecdysone in cells of the beet armyworm, Spodoptera exigua. Arch Insect Biochem Physiol 67:36–49CrossRefPubMedGoogle Scholar
  29. Mota-Sanchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM (2008) Resistance of codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Manag Sci 64:881–890CrossRefPubMedGoogle Scholar
  30. Moulton JK, Pepper DA, Jansson RK, Dennehy TJ (2002) Pro-active management of beet armyworm (Lepidoptera: Noctuidae) resistance to tebufenozide and methoxyfenozide: baseline monitoring, risk assessment, and isolation of resistance. J Econ Entomol 95:414–424CrossRefPubMedGoogle Scholar
  31. Otte J, Pfeiffer D, Tiensin T, Price L, Silbergeld E (2007) Highly pathogenic avian influenza risk, biosecurity and smallholder adversity. Livest Res Rural Dev 19:102Google Scholar
  32. Rehan A, Freed S (2014a) Resistance selection, mechanism and stability of Spodoptera litura (Lepidoptera: Noctuidae) to methoxyfenozide. Pestic Biochem Physiol 110:7–12CrossRefPubMedGoogle Scholar
  33. Rehan A, Freed S (2014b) Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Crop Protect 56:10–15CrossRefGoogle Scholar
  34. Robertson JL, Savin N, Preisler HK, Russell RM (2007) Bioassays with arthropods. CRC press, Boca Raton, FLGoogle Scholar
  35. Sayyed AH, Omar D, Wright DJ (2004) Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Pest Manag Sci 60:827–832CrossRefPubMedGoogle Scholar
  36. Schneider M, Smagghe G, Pineda S, Vinuela E (2004) Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biol Control 31:189–198CrossRefGoogle Scholar
  37. Scott JG (1990) Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls pesticide resistance in arthropods. Springer, p 39–57Google Scholar
  38. Scott JG, Alefantis TG, Kaufman PE, Rutz DA (2000) Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag Sci 56:147–153CrossRefGoogle Scholar
  39. Shah RM, Abbas N, Shad SA (2015a) Assessment of resistance risk in Musca domestica L. (Diptera: Muscidae) to methoxyfenozide. Acta Trop 149:32–37CrossRefPubMedGoogle Scholar
  40. Shah RM, Abbas N, Shad SA, Sial AA (2015b) Selection, resistance risk assessment, and reversion toward susceptibility of pyriproxyfen in Musca domestica L. Parasitol Res 114:487–494CrossRefPubMedGoogle Scholar
  41. Shah RM, Abbas N, Shad SA, Varloud M (2015c) Inheritance mode, cross-resistance and realized heritability of pyriproxyfen resistance in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop 142:149–155CrossRefPubMedGoogle Scholar
  42. Shah RM, Shad SA, Abbas N (2015d) Mechanism, stability and fitness cost of resistance to pyriproxyfen in the house fly, Musca domestica L. (Diptera: Muscidae). Pestic Biochem Physiol 119:67–73CrossRefPubMedGoogle Scholar
  43. Shah RM, Shad SA, Abbas N (2017) Methoxyfenozide resistance of the housefly, Musca domestica L. (Diptera: Muscidae): cross-resistance patterns, stability and associated fitness costs. Pest Manag Sci 73:254–261CrossRefPubMedGoogle Scholar
  44. Shono T, Scott JG (2003) Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. Pestic Biochem Physiol 75:1–7CrossRefGoogle Scholar
  45. Smagghe G, Pineda S, Carton B, Estal PD, Budia F, Viñuela E (2003) Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae). Pest Manag Sci 59:1203–1209CrossRefPubMedGoogle Scholar
  46. Sokal RR, Rohlf FJ (1981) Biometry, 3rd edn. WH Freeman, San FranciscoGoogle Scholar
  47. Sun J, Liang P, Gao X (2012) Cross-resistance patterns and fitness in fufenozide-resistant diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 68:285–289CrossRefPubMedGoogle Scholar
  48. Tabashnik BE (1992) Resistance risk assessment: Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 85:1551–1559CrossRefGoogle Scholar
  49. Tang JD, Caprio MA, Sheppard DC, Gaydon DM (2002) Genetics and fitness costs of cyromazine resistance in the house fly (Diptera: Muscidae). J Econ Entomol 95:1251–1260CrossRefPubMedGoogle Scholar
  50. Taylor DB, Moon RD, Mark DR (2012) Economic impact of stable flies (Diptera: Muscidae) on dairy and beef cattle production. J Med Entomol 49:198–209CrossRefPubMedGoogle Scholar
  51. Wang YH, Liu XG, Zhu YC, Wu SG, Li SY, Chen WM, Shen JL (2009) Inheritance mode and realized heritability of resistance to imidacloprid in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Manag Sci 65:629–634CrossRefPubMedGoogle Scholar
  52. Wang J-J, Wei D, Dou W, Hu F, Liu W-F, Wang J-J (2013) Toxicities and synergistic effects of several insecticides against the oriental fruit fly (Diptera: Tephritidae). J Econ Entomol 106:970–978CrossRefPubMedGoogle Scholar
  53. Zhang L, Shi J, Gao X (2008) Inheritance of beta-cypermethrin resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag Sci 64:185–190CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Entomológica do Brasil 2018

Authors and Affiliations

  1. 1.Dept of Entomology, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UnivMultanPakistan
  2. 2.Dept of EntomologyUniv College of Agriculture and Environmental Sciences, The Islamia Univ of BahawalpurBahawalpurPakistan
  3. 3.Faculty of Forestry and Wood Sciences, EXTEMIT-KCzech Univ of Life SciencesSuchdolCzech Republic
  4. 4.Department of Entomology, Chemical Ecology LaboratoryPenn State University, University ParkPAUSA

Personalised recommendations