Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas

Abstract

The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.

This is a preview of subscription content, log in to check access.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

References

  1. Abdo ASS, Md Rawi CS, Ahmad AH, Rosmahanie Madrus M (2013) Biodiversity of stream insects in the Malaysian Peninsula: spatial patterns and environmental constraints. Ecol Entomol 38:238–249. doi:10.1111/een.12013

    Article  Google Scholar 

  2. Allan JD, Castillo MM (2007) Stream ecology. Springer Netherlands, Dordrecht

    Google Scholar 

  3. Astorga A, Oksanen J, Luoto M et al (2012) Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Glob Ecol Biogeogr 21:365–375. doi:10.1111/j.1466-8238.2011.00681.x

    Article  Google Scholar 

  4. Baptista DF, Buss DF, Egler M et al (2007) A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic Forest streams at Rio de Janeiro State, Brazil. Hydrobiologia 575:83–94. doi:10.1007/s10750-006-0286-x

    Article  Google Scholar 

  5. Baselga A (2008) Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography (Cop) 080221043923263. doi: 10.1111/j.2007.0906-7590.05335.x

  6. Baselga A, Jiménez-Valverde A, Niccolini G (2007) A multiple-site similarity measure independent of richness. Biol Lett 3:642–645. doi:10.1098/rsbl.2007.0449

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bispo PC, Oliveira LG (2007) Diversity and structure of Ephemeroptera, Plecoptera and Trichoptera (Insecta) assemblages from riffles in mountain streams of Central Brazil. Rev Bras Zool 24:283–293. doi:10.1590/S0101-81752007000200004

    Article  Google Scholar 

  8. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  9. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153:51–68. doi:10.1016/S0304-3800(01)00501-4

    Article  Google Scholar 

  10. Chiasson A (2009) Bootstrapping to investigate the effect of number of macroinvertebrate samples on confidence limits of the mean. Environ Monit Assess 149:53–59

    Article  PubMed  Google Scholar 

  11. De Bie T, De Meester L, Brendonck L et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–7. doi:10.1111/j.1461-0248.2012.01794.x

    Article  PubMed  Google Scholar 

  12. R Development Core Team (2014) R: a language and environment for statistical computing

  13. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. doi:10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  14. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecogical distance. Vegetatio 69:57–68

    Article  Google Scholar 

  15. Froehlich CG (1984) Brazilian Plecoptera 4. Nymphs of perlid genera from south-eastern Brazil. Ann Limnol 20:43–47

    Article  Google Scholar 

  16. Grönroos M, Heino J, Siqueira T et al (2013) Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol Evol 3:4473–4487. doi:10.1002/ece3.834

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722. doi:10.1111/j.1365-2427.2011.02610.x

    Article  Google Scholar 

  18. Heino J (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol Rev 88:166–178. doi:10.1111/j.1469-185X.2012.00244.x

    Article  PubMed  Google Scholar 

  19. Heino J, Melo AS, Siqueira T et al (2015a) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869. doi:10.1111/fwb.12533

    Article  Google Scholar 

  20. Heino J, Melo AS, Bini LM et al (2015b) A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecol Evol 5:1235–1248. doi:10.1002/ece3.1439

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huamantinco AA, Nessimian JL (1999) Estrutura e distribuição espacial da comunidade de larvas de Trichoptra (Insecta) em um tributário de primeira ordem do rio Paquequer, Teresópolis, RJ. Acta Limnol Bras 11:1–16

    Google Scholar 

  22. ICMBio (2015) Parna da Chapada dos Veadeiros

  23. Jacobsen D, Brodersen KP (2008) Are altitudinal limits of equatorial stream insects reflected in their respiratory performance? Freshw Biol 53:2295–2308. doi:10.1111/j.1365-2427.2008.02050.x

    CAS  Google Scholar 

  24. Jacobsen D, Schultz R, Encalada A (1997) Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshw Biol 38:247–261. doi:10.1046/j.1365-2427.1997.00210.x

    Article  Google Scholar 

  25. Junk WJ, Piedade MTF, Lourival R et al (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshw Ecosyst 24:5–22. doi:10.1002/aqc.2386

    Article  Google Scholar 

  26. Landeiro VL, Bini LM, Melo AS et al (2012) The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw Biol 57:1554–1564. doi:10.1111/j.1365-2427.2012.02816.x

    Article  Google Scholar 

  27. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659. doi:10.2307/1939924

    Article  Google Scholar 

  28. Legendre P, Legendre LFJ (2012) Numerical ecology, 24th edn. Elsevier, Amsterdam

    Google Scholar 

  29. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  30. Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  PubMed  Google Scholar 

  31. Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  32. Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16:149–159. doi:10.1111/j.1466-8238.2006.00272.x

    Article  Google Scholar 

  33. Peeters ETHM, Gylstra R, Vos JH (2004) Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519:103–115. doi:10.1023/B:HYDR.0000026497.48827.70

    Article  Google Scholar 

  34. Qian H, Ricklefs RE, White PS (2004) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22. doi:10.1111/j.1461-0248.2004.00682.x

    Article  Google Scholar 

  35. Resh VH (2008) Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ Monit Assess 138:131–8. doi:10.1007/s10661-007-9749-4

    Article  PubMed  Google Scholar 

  36. Rosenberg D, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates, 1st edn. Chapman & Hall, London

    Google Scholar 

  37. Salles F, Da-Silva E, Serrão J, Francischetti C (2004) Baetidae (Ephemeroptera) na Região Sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal. Neotrop Entomol 33:725–735

    Article  Google Scholar 

  38. Siqueira T, Bini LM, Roque FO, Cottenie K (2012) A metacommunity framework for enhancing the effectiveness of biological monitoring strategies. PLoS ONE. doi:10.1371/journal.pone.0043626

    Google Scholar 

  39. Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244. doi:10.1126/science.1078037

    CAS  Article  PubMed  Google Scholar 

  40. Wang J, Soininen J, Zhang Y et al (2012) Patterns of elevational beta diversity in micro- and macroorganisms. Glob Ecol Biogeogr 21:743–750. doi:10.1111/j.1466-8238.2011.00718.x

    CAS  Article  Google Scholar 

  41. Whittaker R (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  42. Wiggins GB (1977) Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press

Download references

Acknowledgments

We want to thank Tadeu Siqueira and Juliana Simião Ferreira for the great contribution in reviewing the manuscript and for the constructive comments. We also thank Ministério do Meio Ambiente (MMA), Instituto Brasileiro do Meio Ambiente (IBAMA), for granting the license (number: 19999–1) to sample at the Chapada dos Veadeiros National Park (CVNP) and all the park staff for the support in logistics. This study was supported by research grants from CNPq (process 475355/2007-5) and UFPA (process 01/2014 - PROPESP/FADESP).

Author information

Affiliations

Authors

Corresponding author

Correspondence to B S Godoy.

Additional information

Edited by Marcelo N Rossi – UNIFESP

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1190 kb)

ESM 2

(DOCX 140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Godoy, B.S., Queiroz, L.L., Lodi, S. et al. Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas. Neotrop Entomol 46, 151–158 (2017). https://doi.org/10.1007/s13744-016-0452-4

Download citation

Keywords

  • Aquatic insects
  • turnover
  • altitude
  • limnology
  • spatial ecology
  • conservation areas