Neotropical Entomology

, Volume 45, Issue 2, pp 180–191 | Cite as

Wing Shape Variation in the Taxonomic Recognition of Species of Diachlorus Osten-Sacken (Diptera: Tabanidae) from Colombia

Systematics, Morphology and Physiology

Abstract

We evaluated the directional asymmetry between right and left wings and quantified the intraspecific and interspecific variation of the wing shape of 601 specimens of the genus Diachlorus to determine to what extent the geometrical variation discriminates six species distributed in six protected areas of Colombia. Geometric analyses were performed, integrating Procrustes methods, principal component analyses, cluster analyses, linear and quadratic discriminant analyses, and evaluations of shape changes. In Diachlorus, left and right wings did not present significant asymmetry but a geometrical analysis was allowed for species identification and, in some cases, the origin of the specimens using the variation of wing shape; the best-assigned species was Diachlorus leticia Wilkerson & Fairchild, while the worst was Diachlorus jobbinsi Fairchild, which also had the highest intraspecific variation, while Diachlorus fuscistigma Lutz had the lowest variation. Diachlorus fuscistigma and Diachlorus leucotibialis Wilkerson & Fairchild were the most similar species, while D. leucotibialis and Diachlorus nuneztovari Fairchild & Ortiz were the most disimilar. The specimens with the most different wing shape belonged to Chocó (especially those of D. jobbinsi), the geographically farthest area from the others in the study; however, no correlation was observed between geometric and geographical distances. Linear discriminants were better than nonlinear (quadratic) discriminant analyses in predicting species membership, but the opposite was true for predicting area membership. Based on our data, we hypothesized that other species of Diachlorus could also be discriminated using geometric morphometry of the wing shape.

Keywords

Discriminant analysis morphometrics Neotropical Tabanidae 

Supplementary material

13744_2015_350_MOESM1_ESM.pdf (328 kb)
ESM 1(PDF 327 kb)

References

  1. Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24(1):7–14Google Scholar
  2. Adams DC, Otarola-Castillo E (2013) Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Meth Ecol Evol 4:393–399CrossRefGoogle Scholar
  3. Bolnick DI, Amarasekare P, Araújo MS, Burger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26(4):183–192CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11:567–585CrossRefGoogle Scholar
  5. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York, p 435Google Scholar
  6. Buestán J, Navarrete R, Mejia M (2007) Lista actualizada de Tábanos (Diptera: Tabanidae) del Ecuador. Rev Ecuat Hig Med Trop 44(1):23–63Google Scholar
  7. Calinsky T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat - Theory and Methods 3(1):1–27CrossRefGoogle Scholar
  8. Campos DF, Fernández F (2002) El proyecto “Diversidad de Insectos en Colombia”. Proyecto de red Iberoamericana de Biogeografía y Entomología Sistemática PrIBES. m3m Monografías Tercer Milenio, España, pp 297–300Google Scholar
  9. Cárdenas RE, Buestán J, Dangles O (2009) Diversity and distribution models of horse flies (Diptera: Tabanidae) from Ecuador. Ann Soc Entomol Fr (ns) 45(4):511–528Google Scholar
  10. Cárdenas RE, Hérnandez-L N, Barragán A, Dangles O (2013) Differences in morphometry and activity among tabanid fly assemblages in an Andean tropical montane cloud forest: indication of altitudinal migration? Biotropica 45(1):63–72CrossRefGoogle Scholar
  11. Cardini A, Elton S (2007) Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology 126:121–134CrossRefGoogle Scholar
  12. Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) NbClust: an R package for determining the relevant number of cluster in a data set. J Stat Softw 61(6):1–36CrossRefGoogle Scholar
  13. Coscarón S, Philip CB (1979) A revision of Mycteromyiini (“genus Mycteromyia” of authors), a new tribe of Neotropical horse flies (Diptera, Tabanidae). Proc Calif Acad Sci 41:427–452Google Scholar
  14. Coscarón S, Papavero N (1993) An illustrated manual for the identification of the Neotropical genera and subgenera of Tabanidae (Diptera). Museu Paraense Emilio Goeldi, Coleção Emilie Snethlage, Museu Paraense Emílio Goeldi, Belém, p 150Google Scholar
  15. Coscarón S, Papavero N (2009a) Manual of Neotropical Diptera. Tabanidae Neotrop Dipter 6:1–137Google Scholar
  16. Coscarón S, Papavero N (2009b) Catalogue of Neotropical Diptera. Tabanidae Neotrop Dipter 16:1–199Google Scholar
  17. Coscarón S, Papavero N (2014) Key to the known immature stages of Neotropical Tabanidae. Neotrop Dipter 24:1–22Google Scholar
  18. De la Riva J, Le Pont F, Ali V, Matias A, Mollinedo S, Dujardin JP (2001) Wing geometry as a tool for studying the Lutzomyia longipalpis (Diptera: Psychodidae) complex. Mem Inst Oswaldo Cruz 96(8):1089–1094CrossRefPubMedGoogle Scholar
  19. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester, p 376Google Scholar
  20. Dryden IL (2013) Shapes: statistical shape analysis. R package version 1.1-9. URL http://CRAN.R-project.org/package=shapes
  21. Dujardin JP, Le Pont F, Martinez E (1999) Quantitative morphological evidence for incipient species within Lutzomyia quinquefer (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 94(6):829–836CrossRefPubMedGoogle Scholar
  22. Fairchild GB, Philip CB (1960) A revision of the Neotropical genus Dichelacera subgenus Dichelacera Macquart (Diptera, Tabanidae). Stud Entomol 3(1–4):83Google Scholar
  23. Fairchild GB (1969) Notes on Neotropical Tabanidae (Diptera) XII. Classification and distribution, with keys to genera and subgenera. Arq Zool S Paulo 17(4):199–255CrossRefGoogle Scholar
  24. Fairchild GB (1972) Notes on Neotropical Tabanidae (Diptera) XIII. The genus Diachlorus O.S. Fla. Entomol 55(4):219–229Google Scholar
  25. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188CrossRefGoogle Scholar
  26. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc 97:611–631CrossRefGoogle Scholar
  27. Fraley C, Raftery AE (2007) Model-based methods of classification: using the mclust software in chemometrics. J Stat Softw 18(6):1–13CrossRefGoogle Scholar
  28. Franco FF, Soto IM, Sene FM, Manfrin MH (2008) Phenotypic variation of the aedeagus of Drosophila serido Vilela & Sene (Diptera: Drosophilidae). Neotrop Entomol 37(5):558–563CrossRefPubMedGoogle Scholar
  29. González CR (2004) Agelanius verai, a new species of horse fly from Chile (Diptera: Tabanidae). Zootaxa 571:1–5Google Scholar
  30. González CR (2006) Description of male and redescription of the female of Veprius fulvus Coscarón, Philip & Fairchild, 1979 (Diptera: Tabanidae: Pangoniini). Acta Entomol Chil 30:39–42Google Scholar
  31. González CR (2009) Agelanius chiloensis, a new species of horse fly from southern Chile (Diptera: Tabanidae). Gayana 73:12–16Google Scholar
  32. González CR (2014) Two new species of the genus Dasybasis Macquart, 1847, from Chile (Diptera: Tabanidae: Diachlorini). Zootaxa 3893(2):293–300CrossRefPubMedGoogle Scholar
  33. Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B (Methodological) 53:285–339Google Scholar
  34. Gorayeb IS, Gómes ZT, Velásquez-de-Rios M (2013) Description of a new species of Stenotabanus from Venezuela (Diptera: Tabanidae). Boletim do Museu Paraense Emílio Goeldi Ciências Naturais 8:41–47Google Scholar
  35. Gorayeb IS (2014) Tabanidae (Diptera) of Amazonia XXI. Descriptions of Elephantotus gen. n. and E. tracuateuensis sp. n. (Diachlorini) from the Brazilian coast. ZooKeys 395:23–31CrossRefGoogle Scholar
  36. Gower JC (1975) Generalized Procrustes analysis. Psychometrika 40:33–51CrossRefGoogle Scholar
  37. Henriques AL, Rafael JA (1993) Revisão do gênero Neotropical Acanthocera Macquart (Diptera: Tabanidae). Acta Amazon 23(4):403–440CrossRefGoogle Scholar
  38. Henriques AL, Rafael JA (1999) Tabanidae (Diptera) from Parque Nacional do Jaú, Amazonas, Brazil, with description of two new species of Diachlorus Osten Sacken. In: Burger EJF (ed) Memoirs on entomology international: contributions to the knowledge of Diptera: a collection of articles on Diptera commemorating the life and work of Graham B. Fairchild. Associated, Florida, pp 195–222Google Scholar
  39. Henriques AL (2006) O gênero Philipotabanus Fairchild (Insecta: Diptera: Tabanidae) na Amazônia, com chave para as fêmeas das espécies e descrição de P. obidensis sp. nov. Acta Amazon 36(4):549–556CrossRefGoogle Scholar
  40. Henriques AL, Krolow TK, Rafael JA (2012) Corrections and additions to catalogue of Neotropical Diptera (Tabanidae) of Coscarón & Papavero (2009). Rev Bras Entomol 56(3):277–280CrossRefGoogle Scholar
  41. Henriques AL, Krolow TK (2013) Description of Muscotabanus gen. nov. and M. rafaeli sp. nov. (Diptera: Tabanidae: Diachlorini) from Amazon Basin, Brazil. Mem Inst Oswaldo Cruz 108:383–385CrossRefPubMedCentralGoogle Scholar
  42. Ihaka R, Murrell P, Hornik K, Fisher J, Zeileis A (2013) Colorspace: color space manipulation. R package version 1.2-4. URL http://CRAN.R-project.org/package=colorspace
  43. Jablonski D (2000) Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology (suppl) 26:15–52CrossRefGoogle Scholar
  44. Jaramillo ON, Dujardin JP, Calle-Londoño D, Fonseca-González I (2014) Geometric morphometrics for the taxonomy of 11 species of Anopheles (Nyssorhynchus) mosquitoes. Med Vet Entomol 29:26–36CrossRefGoogle Scholar
  45. Kendall DG (1984) Shape manifolds, procrustean metrics and complex projective spaces. Bull Lond Math Soc 16:81–121CrossRefGoogle Scholar
  46. Klingenberg CP, McIntyre GS, Zaklan SD (1998) Left-right asymmetry of fly wings and the evolution of body axes. Proc R Soc Lond B 265:1255–1259CrossRefGoogle Scholar
  47. Krolow TK, Henriques AL (2009) Descrição de uma nova espécie de Chlorotabanus (Insecta, Diptera, Tabanidae) da Região Neotropical. Iheringia. Série Zoologia 99:204–209CrossRefGoogle Scholar
  48. Krolow TK, Henriques AL (2010) Taxonomic revision of the New World genus Chlorotabanus Lutz, 1913 (Diptera: Tabanidae). Zootaxa 2656:1–40Google Scholar
  49. Krolow TK, Henriques AL, Gorayeb IS, Limeira-de-Oliveira F, Buestán J (2015) Taxonomic revision of the Neotropical genus Pityocera Giglio-Tos, 1896 (Diptera: Tabanidae: Scionini). Zootaxa 3904:1–301CrossRefGoogle Scholar
  50. Lane RP, Marshall J (1981) Geographical variation, races and subspecies. In: Forey PL (ed) The evolving biosphere. British Museum (Natural History), London, pp 9–19Google Scholar
  51. Lessard BD, Cameron SL, Bayless KM, Wiegmann BM, Yeates DK (2013) The evolution and biogeography of the austral horse fly tribe Scionini (Diptera: Tabanidae: Pangoniinae) inferred from multiple mitochondrial and nuclear genes. Mol Phylo Evol 68(3):516–540CrossRefGoogle Scholar
  52. Limeira-de-Oliveira F, Henriques AL, Gorayeb IS (2009) Tabanidae (Diptera) do estado do Maranhão, Brasil IV. Descrição de Dichelacera (Dichelacera) gemmae sp.n.1. Neotrop Entomol 38:104–107CrossRefGoogle Scholar
  53. Lorenz C, Suesdek L (2013) Short report: evaluation of chemical preparation on insect wing shape for geometric morphometrics. Am J Trop Med Hyg 89(5):928–931CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mackerras IM (1954) The classification and distribution of Tabanidae (Diptera). I. General review. Aust J Zool 2:431–454CrossRefGoogle Scholar
  55. Mackerras IM (1955) The classification and distribution of Tabanidae (Diptera). II. History, morphology, classification. Subfamily Pangoniinae. Aust J Zool 3:439–511CrossRefGoogle Scholar
  56. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220PubMedGoogle Scholar
  57. McLachlan GJ, Peel D (2000) Finite mixture models. Wiley series in probability and statistics. New York, p 419Google Scholar
  58. McQuitty LL (1966) Similarity analysis by reciprocal pairs for discrete and continuous data. Educ Psychol Meas 26:825–831CrossRefGoogle Scholar
  59. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014) Cluster: cluster analysis basics and extensions. R package version 1.15.2. URL http://CRAN.R-project.org/package=cluster
  60. Morita SI (2008) A phylogeny of long-tongued horse flies (Diptera: Tabanidae: Philoliche) with the first cladistic review of higher relationships within the family. Invertebr Syst 22:311–327CrossRefGoogle Scholar
  61. Murdoch D, Chow ED (2013) Ellipse: functions for drawing ellipses and ellipse-like confidence regions. R package version 0.3-8. URL http://CRAN.R-project.org/package=ellipse
  62. Oksanen J, Guillaume-Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-10. URL http://CRAN.R-project.org/package=vegan
  63. Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol Evol 3(2):437–449CrossRefPubMedPubMedCentralGoogle Scholar
  64. Polly PD (2005) Development and phenotypic correlations: the evolution of tooth shape in Sorex araneus. Evol Dev 7:29–41CrossRefPubMedGoogle Scholar
  65. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Version 3.1.2. URL http://www.r-project.org/
  66. Rafael JA, Marques DWA, Limeira-de-Oliveira F (2012) Tabanidae (Diptera) of Maranhão state, Brazil. V. Description of Protosilvius gurupi sp. n. (Pangoniinae, Pangoniini) and key to Protosilvius species. ZooKeys 235:41–50CrossRefPubMedGoogle Scholar
  67. Rohlf FJ (1990) Morphometrics. Annu Rev Ecol Evol Syst 21:299–316CrossRefGoogle Scholar
  68. Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  69. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8(4):129–132CrossRefGoogle Scholar
  70. Rohlf FJ, Bookstein FL (2003) Computing the uniform component of shape variation. Syst Biol 51(1):66–69CrossRefGoogle Scholar
  71. Roskov Y, Kunze T, Orrell T, Abucay L, Paglinawan L, Culham A, Bailly N, Kirk P, Bourgoin T, Baillargeon G, Decock W, De Wever A, Didžiulis V (eds) (2014) Species 2000 & ITIS catalogue of life, 2014 annual checklist. Digital resource at www.catalogueoflife.org/annual-checklist/2014/. Accessed 25 Jan 2015
  72. Roth V, Steinhage V (1999) Nonlinear discriminant analysis using Kernel functions. In: Solla S, Leen T, Müller K (eds) Advances in neural information processing systems. MIT, Cambridge, pp 568–574Google Scholar
  73. Runyon JB, Hurley RL (2004) A new genus of long-legged flies displaying remarkable wing directional asymmetry. Proc R Soc Lond B (Suppl) 271:S114–S116CrossRefGoogle Scholar
  74. Sanchez G (2013) DiscriMiner: tools of the trade fir discriminant analysis. R package version 0.1-29. URL http://CRAN.R-project.org/package=DiscriMiner
  75. Savriama Y, Klingenberg CP (2006) Geometric morphometrics of complex symmetric structures: shape analysis of symmetry and asymmetry with Procrustes methods. In: Barber S, Baxter PD, Mardia KV, Walls RE (eds) Interdisciplinary statistics and bioinformatics. Leeds University Press, Leeds, pp 158–161Google Scholar
  76. Savriama Y, Klingenberg CP (2011) Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry. BMC Evol Biol 11:280CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sheets HD, Covino KM, Panasiewicz JM, Morris SR (2006) Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front Zool 3:15CrossRefPubMedPubMedCentralGoogle Scholar
  78. Simons AM (2002) The continuity of microevolution and macroevolution. J Evol Biol 15:688–701CrossRefGoogle Scholar
  79. Slice DE (2007) Geometric morphometrics. Ann Rev Anthropol 36:261–281CrossRefGoogle Scholar
  80. Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman and Co., San Francisco, p 573Google Scholar
  81. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. W. H. Freeman and Co., San Francisco, p 359Google Scholar
  82. Solé RV, Manrubia SC, Benton M, Kauffman S, Bak P (1999) Criticality and scaling in evolutionary ecology. Trends Ecol Evol 14:156–160CrossRefPubMedGoogle Scholar
  83. Soto IM, Carreira VP, Fanara JJ, Hasson E (2007) Evolution of male genitalia: environment and genetic factors affect genital morphology in two Drosophila sibling species and their hybrids. BMC Evol Biol 7:77CrossRefPubMedPubMedCentralGoogle Scholar
  84. Swaddle JP (1997) Within-individual changes in developmental stability affect flight performance. Behav Ecol 8(6):601–604CrossRefGoogle Scholar
  85. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc B 63(2):411–423CrossRefGoogle Scholar
  86. Tomkins JL, Kotiaho JS (2001) Fluctuating asymmetry. In: Encyclopedia of life sciences. MacMillan Publishers Ltd., Nature Publishing Group, London, pp 1–5Google Scholar
  87. Tuffery S (2011) Data mining and statistics for decision making. Wiley, Chichester, p 685CrossRefGoogle Scholar
  88. Turcatel M, de Carvalho CJB, Rafael JA (2010) A taxonomic revision of Stibasoma Schiner, 1867 (Diptera: Tabanidae). Zootaxa 2368:1–39Google Scholar
  89. Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth edition. Springer, p 498Google Scholar
  90. Weaver AA, Schoell SL, Nguyen CM, Lynch SK, Stitzel JD (2014) Morphometric analysis of variation in the sternum with sex and age. J Morphol 275(11):1284–1299CrossRefPubMedGoogle Scholar
  91. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York, p 213CrossRefGoogle Scholar
  92. Wiegmann BM, Tsaur SC, Webb DW, Yeates DK, Cassel BK (2000) Monophyly and relationships of the Tabanomorpha (Diptera: Brachycera) based on 28S ribosomal gene sequences. Ann Entomol Soc Am 93(5):1031–1038CrossRefGoogle Scholar
  93. Wilkerson RC (1979) Horse flies (Diptera: Tabanidae) of the Colombian departments of Chocó, Valle and Cauca. PhD. Thesis, University of Florida, Florida, p 489Google Scholar
  94. Wilkerson RC (1981) Two new species of Dichelacera (Nothocanthocera) Fairchild, with a key to the species of the subgenus (Diptera: Tabanidae). Proc Entomol Soc Wash 83:64–71Google Scholar
  95. Wilkerson RC, Fairchild GB (1982) Five new species of Diachlorus (Diptera: Tabanidae) from South America with a revised key to species and new locality records. Proc Entomol Soc Wash 84:636–650Google Scholar

Copyright information

© Sociedade Entomológica do Brasil 2015

Authors and Affiliations

  1. 1.Lab de Sistemática y Biogeografía, Escuela de BiologíaUniv Industrial de SantanderBucaramangaColombia

Personalised recommendations