Skip to main content
Log in

Cry Proteins from Bacillus thuringiensis Active against Diamondback Moth and Fall Armyworm

  • Biological Control
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Biopesticides based on Bacillus thuringiensis and genetically modified plants with genes from this bacterium have been used to control Plutella xylostella (L.) and Spodoptera frugiperda (J.E. Smith). However, the selection pressure imposed by these technologies may undermine the efficiency of this important alternative to synthetic insecticides. Toxins with different modes of action allow a satisfactory control of these insects. The purpose of this study was to characterize the protein and gene contents of 20 B. thuringiensis isolates from soil and insect samples collected in several areas of Northeast Brazil which are active against P. xylostella and S. frugiperda. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Polymerase chain reaction assays were used to determine toxin genes present within bacterial isolates. The protein profile of the majority of the isolates produced bands of approximately 130 kDa, suggesting the presence of Cry1, Cry8 and Cry9 proteins. The gene content of the isolates of B. thuringiensis investigated showed different gene profiles. Isolates LIIT-4306 and LIIT-4311 were the most actives against both species, with LC50 of 0.03 and 0.02 × 108 spores mL−1, respectively, for P. xylostella, and LC50 of 0.001 × 108 spores mL−1 for S. frugiperda. These isolates carried the cry1, cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry2, cry2A, cry8, and cry9C genes. The obtained gene profiles showed great potential for the control of P. xylostella and S. frugiperda, primarily because of the presence of several cry1A genes, which are found in isolates of B. thuringiensis active against these insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Aly NAH (2007) PCR detection of cry genes in local Bacillus thuringiensis isolates. Aust J Basic Appl Sci 1:461–466

    CAS  Google Scholar 

  • Aranda E, Sanchez JA, Peferoen M, Güereca L, Bravo A (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 68:203–212

    Article  CAS  PubMed  Google Scholar 

  • Aronson AI, Fitz-James P (1976) Structure and morphogenesis of the bacterial spore coat. Microbiol Mol Biol Rev 40:360–402

    CAS  Google Scholar 

  • Asano SI, Yamashita C, Iizuka T, Takeuchi K, Yamanaka S, Cerf D, Yamamoto T (2003) A strain of Bacillus thuringiensis subsp. galleriae containing a novel cry8 gene highly toxic to Anomala cuprea (Coleoptera: Scarabaeidae). Biol Control 28:191–196

    Article  CAS  Google Scholar 

  • Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry-group genes from field- collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883–4890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243:467–472

    Article  CAS  PubMed  Google Scholar 

  • Blanco CA, Portilla M, Jurat-Fuentes JL, Sanchez JF, Viteri D (2010) Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southwest Entomol 35:409–415

    Article  Google Scholar 

  • Bourque SN, Valero JR, Mercier J, Lavoie MC, Levesque RC (1993) Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Appl Environ Microbiol 59:523–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brachman PS, Freeley JC (1970) Spore stain (Wirtz-Conklin). In: Blair JE, Lennette EH, Truant JP (eds) Manual of clinical microbiology. American Society of Microbiology, Bethesda, pp 143–147

    Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez ME, Soberon M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bueno RCOF, Carneiro TR, Pratissoli D, Bueno AF, Fernandes OA (2008) Biology and thermal requirements of Telenomus remus reared on fall armyworm Spodoptera frugiperda eggs. Cienc Rural 38:1–6

  • Castelo Branco M, França FH, Medeiros MA, Leal JGT (2001) Uso de inseticidas para o controle da traça-do-tomateiro e traça-das-crucíferas: um estudo de caso. Hortic Bras 19:60–63

    Article  Google Scholar 

  • Chen M, Shelton A, Ye G (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Zeigler D, Bravo A, Feitelson J, Schnepf E, Lereclus D, Baum J, Van Rie J, Dean D (2015) Bacillus thuringiensis toxin nomenclature. Available at: http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/. Accessed 28 Jan 2015

  • Escudero IR, Estela A, Escriche B, Caballero P (2007) Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Appl Environ Microbiol 73:337–340

    Article  Google Scholar 

  • Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furlong MJ, Wright DJ, Dosdall LM (2013) Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58:517–541

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Wang C, Yang Y, Wu S, Wu Y (2010) Characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella from China. J Invertebr Pathol 104:90–96

    Article  CAS  PubMed  Google Scholar 

  • Granero F, Ballester V, Ferré J (1996) Bacillus thuringiensis crystal proteins Cry1Ab and Cry1Fa share a high affinity binding site in Plutella xylostella (L.). Biochem Biophys Res Commun 224:779–783

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Rodríguez CS, Hernández-Martínez P, van Rie J, Escriche B, Ferré J (2013) Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE 8:68164

    Article  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed Central  PubMed  Google Scholar 

  • Hori H, Suzuki N, Ogiwara K, Himejima M, Indrasith LS, Minami M, Asano S, Sato R, Ohba M, Iwahana H (1994) Characterization of larvicidal toxin protein from Bacillus thuringiensis serovar japonensis strain Buibui specific for scarabaeid beetles. J Appl Bacteriol 76:307–313

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar S, Kaur S (2013) Occurrence of cry genes in Bacillus thuringiensis (Bt) isolates recovered from phylloplanes of crops growing in the New Delhi region of India and toxicity towards diamond-back moth (Plutella xylostella). J Biol Sci 13:463–473

    Article  CAS  Google Scholar 

  • Juarez-Perez VM, Ferrandis MD, Frutos R (1997) PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl Environ Microbiol 63:2997–3002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalman S, Kiehne KL, Libs JL, Yamamoto T (1993) Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl Environ Microbiol 59:1131–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1991) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    Google Scholar 

  • Lemes ARN, Davolos CC, Legori PCBC, Fernandes OA, Ferré J, Lemos MVF, Desiderio JA (2014) Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLoS One 9, e107196

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu YB, Tabashnik BE, Pusztai-Carey M (1996) Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 89:798–804

    Article  CAS  Google Scholar 

  • Liu YB, Tabashnik BE, Meyer SK, Crickmore N (2001) Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth. Appl Environ Microbiol 67:3216–3219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loguercio LL, Santos CG, Barreto MR, Guimaraes CT, Paiva E (2001) Association of PCR and feeding bioassays as a large-scale method to screen tropical Bacillus thuringiensis isolates for a cry constitution with higher insecticidal effect against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Lett Appl Microbiol 32:362–367

    Article  CAS  PubMed  Google Scholar 

  • Luttrell RG, Wan L, Knighten K (1999) Variation in susceptibility of noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis. J Econ Entomol 92:21–32

    Article  CAS  Google Scholar 

  • Martínez C, Caballero P (2002) Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats. J Appl Microbiol 92:745–752

    Article  PubMed  Google Scholar 

  • Matten SR, Head GP, Quemada HD (2008) How government regulation can help or hinder the integration of Bt crops within IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistance genetically modified crops within IPM programs. Springer, New York, pp 27–39

    Chapter  Google Scholar 

  • Medeiros PT, Ferreira MN, Martins ES, Gomes ACMM, Falcão R, Dias JMCS, Monnerat RG (2005) Seleção e caracterização de estirpes de Bacillus thuringiensis efetivas no controle da traça-das-crucíferas Plutella xylostella. Pesq Agrop Brasileira 40:1145–1148

    Article  Google Scholar 

  • Mohan M, Gujar GT (2001) Toxicity of Bacillus thuringiensis strains and commercial formulations to the diamondback moth, Plutella xylostella (L.). Crop Prot 20:311–316

    Article  Google Scholar 

  • Mohan M, Sushil SN, Selvakumar G, Bhatt JC, Gujar GT, Gupta HS (2009) Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Pest Manag Sci 65:27–33

    Article  CAS  PubMed  Google Scholar 

  • Monnerat R, Masson L, Brousseau R, Pusztai-Carey M, Bordat D, Frutos R (1999) Differential activity and activation of Bacillus thuringiensis insecticidal proteins in diamondback moth, Plutella xylostella. Curr Microbiol 39:159–162

    Article  CAS  PubMed  Google Scholar 

  • Monnerat RG, Batista AC, de Medeiros PT, Martins ES, Melatti VM, Praça LB, Dumas VF, Morinaga C, Demo C, Gomes ACM, Falcão R, Siqueira CB, Silva-Werneck JO, Berry C (2007) Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol Control 41:291–295

    Article  Google Scholar 

  • Noguera PA, Ibarra JE (2010) Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl Environ Microbiol 76:6150–6155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohba M, Aizawa K (1986) Distribution of Bacillus thuringiensis in soils of Japan. J Invertebr Pathol 47:277–282

    Article  Google Scholar 

  • Oliveira AC, Siqueira HAA, Oliveira JV, Silva JE, Michereff Filho M (2011) Resistance of Brazilian diamondback moth populations to insecticides. Sci Agric 68:154–159

    Google Scholar 

  • Patel HK, Jani JJ, Vyas HG (2009) Isolation and characterization of Lepidopteran specific Bacillus thuringiensis. Int J Integr Biol 6:121–126

    CAS  Google Scholar 

  • Pinto LMN, Fiuza LM (2003) PCR and bioassays screening of Bacillus thuringiensis isolates from rice-fields of Rio Grande do Sul, specific to lepidopterans and coleopterans. Braz J Microbiol 34:305–310

    Article  CAS  Google Scholar 

  • Porcar M, Juárez-Pérez V (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26:419–432

    Article  CAS  PubMed  Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559

    CAS  PubMed  Google Scholar 

  • Santos KB, Neves P, Meneguim AM, Santos RB, Santos WJ, Boas GV, Dumas V, Martins E, Praça LB, Queiroz P, Berry C, Monnerat R (2009) Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biol Control 50:157–163

    Article  Google Scholar 

  • Sayyed AH, Wright DJ (2001) Fitness costs and stability of resistance to Bacillus thuringiensis in a field population of the diamondback moth Plutella xylostella L. Ecol Entomol 26:502–508

    Article  Google Scholar 

  • Sayyed AH, Haward R, Herrero S, Ferre J, Wright DJ (2000) Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Appl Environ Microbiol 66:1509–1516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol 2014:1–12

    Article  Google Scholar 

  • Seifinejad A, Salehi-Jouzani GR, Hosseinzadeh A, Abdmishani C (2008) Characterization of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biol Control 44:216–226

    Article  CAS  Google Scholar 

  • Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F (2009) Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185. Curr Microbiol 58:389–392

    Article  CAS  PubMed  Google Scholar 

  • Siebert MW, Babock JM, Nolting S, Santos AC, Adamczyk JJ Jr, Neese PA, King JE, Jenkins JN, Mccarty J, Lorenz GM, Fromme DD, Lassiter RB (2008) Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Fla Entomol 91:555–565

    Google Scholar 

  • Silva SMB, Silva-Werneck JO, Falcão R, Gomes AC, Fragoso RR, Quezado MT, Neto OBO, Aguiar JB, Sá MFG, Bravo A, Monnerat RG (2004) Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. J Appl Entomol 128:102–107

    Article  Google Scholar 

  • Silva MC, Siqueira HAA, Marques EJ, Silva LM, Barros R, Lima Filho JVM, Silva SMFA (2012) Bacillus thuringiensis isolates from northeastern Brazil and their activities against Plutella xylostella (Lepidoptera: Plutellidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Biocontrol Sci Technol 22:583–599

    Article  Google Scholar 

  • Silva-Werneck JO, Ellar DJ (2008) Characterization of a novel Cry9Bb delta-endotoxin from Bacillus thuringiensis. J Invertebr Pathol 98:320–328

    Article  CAS  PubMed  Google Scholar 

  • Singh CK, Ojha A, Bhatanagar RK, Kachru DN (2008) Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs—standard single, multiplex and construct-specific PCR assays. Anal Bioanal Chem 390:377–387

    Article  CAS  PubMed  Google Scholar 

  • Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038

    Article  PubMed  Google Scholar 

  • Storer NP, Kubiszak ME, Ed King J, Thompson GD, Santos AC (2012) Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J Invertebr Pathol 110:294–300

    Article  PubMed  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW, Moar WJ (1993) Resistance to toxins from Bacillus thuringiensis subsp. kurstaki causes minimal cross-resistance to B. thuringiensis subsp. aizawai in diamondback moth (Lepidoptera: Plutellidae). Appl Environ Microbiol 59:1332–1335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW, Heckel DG (1994) Cross- resistance to Bacillus thuringiensis toxin CryIF in the diamondback moth, Plutella xylostella. Appl Environ Microbiol 40:4627–4629

  • Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ferre J (1998) Insect resistance to Bacillus thuringiensis: uniform or diverse? Philos Trans R Soc Lond B 353:1751–1756

    Article  Google Scholar 

  • Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  CAS  PubMed  Google Scholar 

  • Talekar NS, Shelton AM (1993) Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38:275–301

    Article  Google Scholar 

  • Thaphan P, Keawsompong S, Chanpaisaeng J (2008) Isolation, toxicity and detection of cry gene in Bacillus thuringiensis isolates in Krabi province, Thailand. Songklanakarin J Sci Technol 30:597–601

    Google Scholar 

  • Travers RS, Martin PA, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uribe D, Martinez W, Cerón J (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82:119–127

    Article  CAS  PubMed  Google Scholar 

  • van Frankenhuyzen K, Nystrom C (2015) The Bacillus thuringiensis toxin specificity database. Available at: http://www.glfc.cfs.nrcan.gc.ca/bacillus. Accessed 30 Jan 2015

  • van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol 56:1378–1385

    PubMed Central  PubMed  Google Scholar 

  • Walter C, Fladung M, Boerjan W (2010) The 20-year environmental safety record of GM trees. Nat Biotechnol 28:656–658

    Article  CAS  PubMed  Google Scholar 

  • Waquil JM, Vilela FMF (2003) Gene bom. Revista Cultivar 49:22–26

    Google Scholar 

  • Wasano N, Ohba M (1998) Assignment of δ-endotoxin genes of the four lepidoptera-specific Bacillus thuringiensis strains that produce spherical parasporal inclusions. Curr Microbiol 37:408–411

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Guo Y, Liang G, Wu K, Zhang J, Tabashnik BE, Li X (2015) Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Sci Rep 5:7714

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitehouse MEA, Wilson LJ, Davies AP, Cross D, Goldsmith P, Thompson A, Harden S, Baker G (2014) Target and nontarget effects of novel “Triple-stacked” Bt-transgenic cotton 1: canopy arthropod communities. Environ Entomol 43:218–241

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Mullins M, Warren G, Koziel M, Estruch J (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ (2012) Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J Econ Entomol 105:1115–1129

    Article  PubMed  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Cao J, Earle ED, Shelton AM (2001) Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. J Econ Entomol 94:1547–1552

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Universidade Federal Rural de Pernambuco through the Graduate Program in Agricultural Entomology for the opportunity of developing this work, the Universidade Estadual do Maranhão for granting a scholarship to the first author, and the Program PROF/CAPES for supporting the development of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Silva.

Additional information

Edited by Moisés J Zotti – UFSM

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.C., Siqueira, H.A.A., Silva, L.M. et al. Cry Proteins from Bacillus thuringiensis Active against Diamondback Moth and Fall Armyworm. Neotrop Entomol 44, 392–401 (2015). https://doi.org/10.1007/s13744-015-0302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0302-9

Keywords

Navigation