Skip to main content
Log in

Female Preference and Offspring Performance in the Seed Beetle Gibbobruchus bergamini Manfio & Ribeiro-Costa (Coleoptera: Chrysomelidae): A Multi-Scale Comparison

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The search for and choice of oviposition sites are a key step in the life cycle of herbivorous insects. Theory predicts that natural selection should favor the discrimination ability of female insects to select between high- and low-quality oviposition sites. However, correlation between female preference and offspring performance is apparently lacking or even negative in some herbivore-plant systems. A possible explanation for this seeming failure is that most studies have focused on a single factor and spatial scale. Here, we investigated the preference-performance relationship in the seed beetle Gibbobruchus bergamini Manfio & Ribeiro-Costa (Coleoptera: Chrysomelidae). We took into account several potential factors affecting oviposition choices and larval survivorship through a multi-level approach. Hierarchical analysis that controlled for the non-independence of observations demonstrated that oviposition site choices were not related to the factors that most influenced larval survivorship. The apparent effects of other pod-feeding herbivores were greater at the plant and branch scales while at the pod level the most important factors were plant-related variables. Oviposition choices seemed to be time-constrained, meaning that females have little opportunity to further increase offspring performance through additional compensatory choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Avidov Z, Berlinger MJ, Applebaum SW (1965) Physiological aspects of host specificity in the Bruchidae: III. Effect of curvature and surface area on oviposition of Callosobruchus chinensis L. Anim Behav 13:178–180

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-6. http://CRAN.R-project.org/package=lme4. Accessed 5 Mar 2014

  • Bernays EA, Chapman RF (1994) Host plant selection by phytophagous insects. Chapman & Hall, New York, p 312

    Book  Google Scholar 

  • Boege K, Domínguez CA (2008) Pre-dispersal seed predation reduces the reproductive compensatory advantage of thrum individuals in Erythroxylum havanense (Erythroxylaceae). Evol Ecol 22:675–687

    Article  Google Scholar 

  • Boggs CL (2009) Understanding insect life histories and senescence through a resource allocation lens. Funct Ecol 23:27–37

    Article  Google Scholar 

  • Brodbeck BV, Andersen PC, Oden S, Mizell RF (2007) Preference-performance linkage of the xylem feeding leafhopper, Homalodisca vitripennis (Hemiptera Cicadellidae). Environ Entomol 36:1512–1522

    Article  CAS  PubMed  Google Scholar 

  • Brody AK (1997) Effects of pollinators, herbivores, and seed predators on flowering phenology. Ecology 78:1624–1631

    Article  Google Scholar 

  • Campbell JF, Runnion C (2003) Patch exploitation by female red flour beetles, Tribolium castaneum. J Insect Sci 3:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coetzee JH, Giliomee JH (1987) Seed predation and survival in the infructescences of Protea repens (Proteaceae). S Afr J Bot 53:61–64

    Google Scholar 

  • Cornelissen T, Fernandes GW (2008) Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117:1121–1130

    Article  Google Scholar 

  • Cronin JT, Abrahamson WG (2001) Goldenrod stem galler preference and performance: effects of multiple herbivores and plant genotypes. Oecologia 127:87–96

    Article  Google Scholar 

  • De Menezes LCCRCR, Klein J, Kestring D, Rossi MN (2010) Bottom-up and top-down effects in a pre-dispersal seed predation system: are non-predated seeds damaged? Basic Appl Ecol 11:126–134

    Article  Google Scholar 

  • Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33:997–1012

    Article  CAS  PubMed  Google Scholar 

  • Fabrikschleichach FS (2005) Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol Entomol 30:299–306

    Article  Google Scholar 

  • Flaherty L, Quiring D (2008) Plant module size and dose of gall induction stimulus influence gall induction and galler performance. Oikos 117:1601–1608

    Article  Google Scholar 

  • Foggo A, Higgins S, Wargent JJ, Coleman RA (2007) Tri-trophic consequences of UV-B exposure: plants, herbivores and parasitoids. Oecologia 154:505–512

    Article  PubMed  Google Scholar 

  • Fox CW, Martin JD, Thakar MS, Mousseau TA (1996) Clutch size manipulations in two seed beetles: consequences for progeny fitness. Oecologia 108:88–94

    Article  Google Scholar 

  • Gonz G-RH, Grez AA, González RH (1995) Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Ecology 103:471–474

    Google Scholar 

  • Gripenberg S, Morriën E, Cudmore A, Salminen JP, Roslin T (2007) Resource selection by female moths in a heterogeneous environment: what is a poor girl to do? J Anim Ecol 76:854–65

  • Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecol Lett 13:383–393

    Article  PubMed  Google Scholar 

  • Hamback PA, Englund G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecol Lett 8:1057–1065

    Article  Google Scholar 

  • Heisswolf A, Obermaier E, Poethke HJ (2005) Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol Entomol 30:299–306

    Article  Google Scholar 

  • Hespenheide HA (1991) Bionomics of leaf-mining insects. Annu Rev Entomol 36:535–560

    Article  Google Scholar 

  • Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356

    Article  CAS  PubMed  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Janz N, Bergström A, Johansson J (2005) Frequency dependence of host plant choice within and between patches: a large cage experiment. Evol Ecol 19:289–302

    Article  Google Scholar 

  • Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492

    Article  Google Scholar 

  • Johnson CD, Romero J, Romero-Nápoles J (2004) A review of evolution of oviposition guilds in the Bruchidae (Coleoptera). Rev Bras Entomol 48:401–408

    Google Scholar 

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994

    Article  PubMed  Google Scholar 

  • Krugman SL, Koerber TW (1969) Effect of cone feeding by Leptoglossus occidentalis on ponderosa pine seed development. For Sci 15:104–111

    Google Scholar 

  • Lancaster J, Downes BJ, Arnold A (2010) Environmental constraints on oviposition limit egg supply of a stream insect at multiple scales. Oecologia 163:373–384

    Article  PubMed  Google Scholar 

  • Manfio D, Ribeiro-Costa C, Caron E (2013) Phylogeny and revision of the New World seed-feeding bruchine genus Gibbobruchus Pic (Coleoptera: Chrysomelidae). Invert Syst 27:1–37

    Google Scholar 

  • Mayhew PJ (1997) Adaptive patterns of host-plant selection by phytophagous insects. Oikos 79:417

    Article  Google Scholar 

  • Mayhew PJ (2001) Herbivore host choice and optimal bad motherhood. Trends Ecol Evol 16:165–167

    Article  PubMed  Google Scholar 

  • Mustart PJ, Cowling RM, Wright M (1995) Clustering of fertile seeds in infructescences of serotinous Protea species: anti-predation mechanism? Afr J Ecol 33:224–229

    Article  Google Scholar 

  • Nakamura RR (1988) Seed abortion and seed size variation within fruits of Phaseolus vulgaris: polen donor and resource limitation effects. Am J Bot 75:1003–1010

    Article  Google Scholar 

  • Ostergård H, Hambäck PA, Ehrlén J (2007) Pre-dispersal seed predation: the role of fruit abortion and selective oviposition. Ecology 88:2959–2965

    Article  PubMed  Google Scholar 

  • Pöykkö H (2011) Enemy-free space and the host range of a lichenivorous moth: a field experiment. Oikos 120:564–569

    Article  Google Scholar 

  • Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:10

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for statiscal computing, Vienna, Austria. URL http://www.R-project.org/. Accessed 5 Mar 2014

  • Rabasa SG, Gutiérrez D, Escudero A (2005) Egg laying by a butterfly on a fragmented host plant: a multi-level approach. Ecography 28:629–639

    Article  Google Scholar 

  • Refsnider JM, Janzen FJ (2010) Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu Rev Ecol Evol Syst 41:39–57

    Article  Google Scholar 

  • Ribeiro-Costa CS, Costa ADS (2002) Comportamento de oviposição de Bruchidae (Coleoptera) predadores de sementes de Cassia leptophylla Vogel (Caesalpinaceae), morfologia dos ovos e descrição de uma nova espécie. Rev Bras Zool 19:305–316

    Article  Google Scholar 

  • Ribeiro-Costa CS, Manfio D, Bergamini LL (2014) A new species of Gibbobruchus Pic from Brazil, with new host plants and distribuition records for other Gibbobruchus species (Coleoptera, Chrysomelidae, Bruchinae). Fla Entomol 97:1085–1092

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Rowe WJ, Potter DA (2000) Shading effects on susceptibility of Rosa spp. to defoliation by Popillia japonica (Coleoptera: Scarabaeidae). Environ Entomol 29:502–508

    Article  Google Scholar 

  • Santos JC, Silveira FAO, Fernandes GW (2008) Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evol Ecol 22:123–137

    Article  Google Scholar 

  • Seagraves MP, Riedell WE, Lundgren JG (2011) Oviposition preference for water-stressed plants in Orius insidiosus (Hemiptera: Anthocoridae). J Insect Behav 24:132–143

    Article  Google Scholar 

  • Silva LA, Maimoni-Rodella RCS, Rossi MN et al (2007) A Preliminary investigation of pre-dispersal seed predation by Acanthoscelides schrankiae Horn (Coleoptera: Bruchidae) in Mimosa bimucronata (DC.) Kuntze Trees. Neotrop Entomol 36:197–202

    Article  PubMed  Google Scholar 

  • Solomon BP (1981) Response of a host-specific herbivore to resource density, relative abundance and phenology. Ecology 62:1205–1214

    Article  Google Scholar 

  • Souza AJ, Santos PO, Pinto MST et al (2011) Natural seed coats provide protection against penetration by Callosobruchus maculatus (Coleoptera: Bruchidae) larvae. Crop Prot 30:651–657

    Article  Google Scholar 

  • Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Article  Google Scholar 

  • Toquenaga Y, Fujii K (1990) Contest and scramble competition in two bruchid species, Callosobruchus analis and C. phaseoli (Coleoptera: Bruchidae) I. Larval competition curves and interference mechanisms. Res Popul Ecol (Kyoto) 32:349–363

    Article  Google Scholar 

  • Traveset A (1991) Pre-dispersal seed predation in Central American Acacia farnesiana: factors affecting the abundance of co-occurring bruchid beetles. Ecol Entomol 87:570–576

    Google Scholar 

  • Traveset A (1993) Deceptive fruits reduce seed predation by insects in Pistacia terebinthus L. (Anacardiaceae). Evol Ecol 7:357–361

    Article  Google Scholar 

  • Vallius E (2000) Position-dependent reproductive success of flowers in Dactylorhiza maculata (Orchidaceae). Funct Ecol 14:573–579

    Article  Google Scholar 

  • Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27(8)

Download references

Acknowledgments

The authors would like to thank L.B. Faria, R.D. Daud, and B.B. Santos for helpful comments on an early version of this manuscript. L.L.B was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). M.A.N received research fellowships (306843/2012-9 and 306870/2012-6, respectively) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L L Bergamini.

Additional information

Edited by Angelo Pallini – UFV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergamini, L.L., Almeida-Neto, M. Female Preference and Offspring Performance in the Seed Beetle Gibbobruchus bergamini Manfio & Ribeiro-Costa (Coleoptera: Chrysomelidae): A Multi-Scale Comparison. Neotrop Entomol 44, 328–337 (2015). https://doi.org/10.1007/s13744-015-0294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0294-5

Keywords

Navigation