Skip to main content

Toxic Effects of Couroupita guianensis Against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae)

Abstract

Laboratory experiments were conducted to find out the efficacy of different crude extracts and fractions of Couroupita guianensis (Lecythidaceae) against Spodoptera litura (Fabricius). Results revealed that hexane, chloroform and ethyl acetate extracts of C. guianensis showed larvicidal and pupicidal activities against S. litura. Maximum larvicidal activity (68.66%) was observed in hexane extract at 5.0% concentration followed by chloroform and ethyl acetate extracts, and least LC50 value of 2.64% was observed in hexane extract. A 100% pupicidal activity was observed in hexane extract. Based on the efficacy of crude extracts, the effective crude extract (hexane extract) was further fractionated and subjected to screening for biological activities against S. litura. Among the eight fractions isolated from the hexane extract, fraction 8 showed maximum antifeedant activity (81. 8%) and larvicidal activity (76.9%) at 1000-ppm concentration; this fraction showed least LC50 value of 375.92 ppm for larvicidal activity. Cent per cent pupicidal activity was recorded. Reduced midgut and hemolymph protein contents were observed at 1000 ppm of fraction 8. Histopathological studies revealed that fraction 8 severely damaged the midgut cells of S. litura. This fraction could be used to develop botanical formulation to control agricultural pests.

This is a preview of subscription content, access via your institution.

Fig 1

References

  • Abbaszadeh G, Srivastava C, Walia S (2012) Insect growth inhibitory activity of Clerodane diterpenoids isolated from Clerodendron infortunatum L. on the cotton bollworm, Helicoverpa armigera (Hubner). Natl Acad Sci Lett 35:457–464

    CAS  Article  Google Scholar 

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Article  Google Scholar 

  • Banaag A, Honda H, Shono T (1997) Effects of alkaloids from yam, Dioscorea hispida Schlussel, on feeding and development of larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Appl Entomol Zool 32:119–126

    CAS  Google Scholar 

  • Baskar K, Ignacimuthu S (2013) Ovicidal activity of Couroupita guianensis (Aubl.) against cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Arch Phytopathol Plant Protect 46:1571–1579

    Article  Google Scholar 

  • Baskar K, Kingsley S, Vendan SE, Paulraj MG, Duraipandiyan V, Ignacimuthu S (2009) Antifeedant, larvicidal and pupicidal activities of Atalantia monophylla (L) Correa against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Chemosphere 75:355–359

    CAS  PubMed  Article  Google Scholar 

  • Baskar K, Maheshwaran R, Kingsley S, Ignacimuthu S (2010) Bioefficacy of Couroupita guianensis (Aubl.) against Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae) larvae. Span J Agric Res 8:135–141

    Article  Google Scholar 

  • Baskar K, Maheshwaran R, Kingsley S, Ignacimuthu S (2011) Bioefficacy of plant extracts against Asian army worm Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Agric Technol 7:123–131

    Google Scholar 

  • Baskar K, Duraipandiyan V, Ignacimuthu S (2014a) Bioefficacy of the triterpenoid friedelin against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Pest Manag Sci. doi:10.1002/ps.3742

    Google Scholar 

  • Baskar K, Kumar AS, Raj GA, Packiam SM, Ignacimuthu S (2014b) Bioefficacy of Blumea mollis (D. Don) Merr. and Hygrophila schulii (Buch.-Ham.) (Syn. H. auriculata) against Helicoverpa armigera (Hübner). Arch Phytopathol Plant Protect. doi:10.1080/03235408.2014.893633

    Google Scholar 

  • Baskar K, Muthu C, Ignacimuthu S (2014c) Effect of pectolinaringenin, a flavonoid from Clerodendrum phlomidis, on total protein, glutathione S-transferase and esterase activities of Earias vittella and Helicoverpa armigera. Phytoparasitica 42:323–331

    CAS  Article  Google Scholar 

  • Baskar K, Muthu C, Ignacimuthu S (2014d) Ovicidal activity of Couroupita guianensis (Aubl.) against Spodoptera litura (Fab.). Psyche J Entomol. doi:10.1155/2014/783803

    Google Scholar 

  • Bentley MD, Leonard DE, Stoddard WF, Zalkow LH (1984) Pyrrolizidine alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann Entomol Soc Am 77:393–397

    CAS  Article  Google Scholar 

  • Blessing LDT, Colom OA, Popich S, Neske A, Bardon A (2010) Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. J Pest 83:307–310

    Article  Google Scholar 

  • Bottrell DG, Schoenly KG (2012) Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J Asia Pac Entomol 15:122–140

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Article  Google Scholar 

  • Breuer M, Schmidt GH (1996) Wirkung einer mit Melia azedarach extrakt behandelten raupendiät über auf Wachstum, entwicklung und fekundiät von Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Zeitschr Pflanzenkr Pflanzench 103:171–194

    Google Scholar 

  • Dang QL, Choi YH, Choi GJ, Jang KS, Park MS, Park NJ, Lim CH, Kim H, Ngoc LH, Kim JC (2010) Pesticidal activity of ingenane diterpenes isolated from Euphorbia kansui against Nilaparvata lugens and Tetranychus urticae. J Asia Pac Entomol 13:51–54

    CAS  Article  Google Scholar 

  • Desal T, Golatakar SG, Rane JB, Ambaye RY, Kamath VR (2003) Larvicidal property of Couroupita guianensis (Aubl.). Indian Drugs 40:484–486

    Google Scholar 

  • Dolui AK, Debnath M (2010) Antifeedant activity of plant extracts to an insect Helopeltis theivora. J Environ Biol 31:557–559

    CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London, p 383

    Google Scholar 

  • Flipsen JTM, Martens JWM, Oers MMV, Vlak JM, Vanlent JWM (1995) Passage of Autographa californica nuclear polyhedrosis virus through midgut epithelium of Spodoptera exigua larvae. Virology 208:325–328

    Article  Google Scholar 

  • Gökçe A, Isaacs R, Whalon ME (2011) Ovicidal, larvicidal and anti-ovipositional activities of Bifora radians and other plant extracts on the grape berry moth Paralobesia viteana (Clemens). J Pest Sci 84:487–493

    Article  Google Scholar 

  • González-Coloma A, Guadaño A, Gutiérrez C, Cabrera R, de La Peña E, de La Fuente G, Reina M (1998) Antifeedant Delphinium diterpenoid alkaloids, structure-activity relationships. J Agric Food Chem 46:286–290

    PubMed  Article  Google Scholar 

  • Henry M, Béguin M, Requier F, Rollin O, Odoux JF, Aupinel P (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350

    CAS  PubMed  Article  Google Scholar 

  • Hermawan W, Tsukuda R, Fujisaki K, Kobayashi A, Nakasuji F (1993) Influence of crude extracts from a tropical plant, Andrographis paniculata (Acanthaceae), on suppression of feeding by the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) and oviposition by the azuki bean weevil, Callosobruchus chinensis (Coleoptera: Bruchidae). Appl Entomol Zool 28:251–254

    Google Scholar 

  • Hussin NM, Muse R, Ahmad S, Ramli J, Mahmood M, Sulaiman MR, Shukor MYA, Rahman MFA, Aziz KNK (2009) Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L. (Lecythidaceae). Afr J Biotechnol 8:2835–2842

    CAS  Google Scholar 

  • Jie-Yun C, Duo-Zhi C, Shi-Hong L, Ning-Chuan K, Yu Z, Ying-Tong D, Qiang Z, Juan H, Shu-Xi J, Shun-Lin L, Sheng-Hong L, Xiao-Jiang H, Hong-Ping H (2014) Limonoids from Aphanamixis polystachya and their antifeedant activity. J Nat Prod 77:472–482

    Article  Google Scholar 

  • Kamel AM (2010) Can we use the moringa oil as botanical insecticide against Spodoptera frugiperda? Acad J Entomol 3:59–64

    CAS  Google Scholar 

  • Kandagal AS, Khetagoudar MC (2012) Study on larvicidal activity of weed extracts against Spodoptera litura. J Environ Biol 34:253–257

    Google Scholar 

  • Khan MR, Kihara M, Omoloso AD (2003) Antibiotic activity of Couroupita guianensis. J Herbs Spices Med Plants 10:95–108

    Article  Google Scholar 

  • Lima TC, da Silva TK, Silva FL, Barbosa-Filho JM, Marques MO, Santos RL, Cavalcanti SC, de Sousa DP (2014) Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere 104:37–43

    CAS  PubMed  Article  Google Scholar 

  • Murugan K, Sivaramakrishnan S, Kumar NS, Jeyabalan D, Nathan SS (1998) Synergistic interaction of botanicals and biocides nuclear polyhedrosis virus on pest control. J Sci Ind Res 57:732–739

    Google Scholar 

  • Osman HH, Osman HH (2014) Effectiveness of Nigella sativa, Profenophos and their mixture on some biochemical and histological parameters of Spodoptera littoralis (Boisd) and albino rat. J Biol Chem Res 31:446–463

    Google Scholar 

  • Pechan T, Cohen A, Willians WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense protease that disrupt the peritrophic matrix of caterpillars. Proc Nalt Acad Sci USA 99:13319–13323

    CAS  Article  Google Scholar 

  • Potter DA, Kimmerer TW (1989) Inhibition of herbivory on young holly leaves: evidence for the defensive role of saponins. Oecologia 78:322–329

    Article  Google Scholar 

  • Rovira I, Berkov A, Parkinson A, Tavakilian G, Mori S, Meurer-Grimes B (1999) Antimicrobial activity of neotropical wood and bark extracts. Pharm Biol 37:208–215

    Article  Google Scholar 

  • Sadek MM (2003) Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 127:396–404

    Article  Google Scholar 

  • Schmidt GH, Ahmed AAI, Breuer M (1997) Effect of Melia azedarach extract on larval development and reproduction parameters of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) (Lep. Noctuidae). Anz Schadlingskde Pflanzenschutz Umweltschutz 70:4–12

    Article  Google Scholar 

  • Schmutterer H (1995) The neem tree Azadirachta indica a Juss. And other Meliaceous plants: sources of unique natural products for integrated pest management, medicine, industry and other purposes. VCH Publisher, Weinheim

    Book  Google Scholar 

  • Singh A, Sharma OP (2004) Integrated pest management for sustainable agriculture. In: Birthal PS, Sharma OP (eds) Proceedings of Integrated Pest Management in Indian Agriculture, pp 11–24

  • Stamp NE, Casey TM (1993) Caterpillars. Ecological and evolutionary constraints on foraging. Chapman & Hall Inc, New York

    Google Scholar 

  • Terra WA, Ferreira C, Jordao BP, Dillon RJ (1996) Digestive enzymes. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 153–194

    Chapter  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1994) Publication 9345.0-051, 2:1

  • Whitehorn PR, Connor SO, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (ref: SR/SO/AS-03/2004), New Delhi, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Baskar.

Additional information

Edited by Raul N Guedes – UFV

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baskar, K., Ignacimuthu, S. & Jayakumar, M. Toxic Effects of Couroupita guianensis Against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Neotrop Entomol 44, 84–91 (2015). https://doi.org/10.1007/s13744-014-0260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-014-0260-7

Keywords

  • Antifeedant
  • histopathology
  • larvicidal
  • pupicidal
  • protein