Skip to main content

Advertisement

Log in

Ants of Three Adjacent Habitats of a Transition Region Between the Cerrado and Caatinga Biomes: The Effects of Heterogeneity and Variation in Canopy Cover

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Habitat heterogeneity and complexity associated with variations in climatic conditions are important factors determining the structure of ant communities in different terrestrial ecosystems. The objective of this study was to describe the horizontal and vertical distribution patterns of the ant community associated with three adjacent habitats in a transition area between the Cerrado and Caatinga biomes at the Pandeiros River, state of Minas Gerais, Brazil. We tested the following hypotheses: (1) the richness and composition of ant species and functional group structure changes between different habitats and strata; (2) habitats with higher tree species richness and density support higher ant species richness; and (3) habitats with lower variation in canopy cover support higher ant species richness. Sampling was conducted in three adjacent habitats and at three vertical strata. Ant species richness was significantly different among vertical strata. Ant species composition was different among both habitats and vertical strata and functional group structure was divergent among habitats. Partitioning of the diversity revealed that the diversity for the three components was statistically different from the one expected by the null model; α and β 2 were higher and β 1 was lower than the values expected by chance. Tree density and variation in canopy cover negatively affected ant species richness. The occurrence of different species and the changing of functional group structures in different habitats and strata suggest an ecological–evolutionary relationship between ants and their habitats and emphasize the need to implement local conservation strategies in the ecotones between biomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acosta FJ, Lopez F, Serrano JM (1995) Dispersed versus central place foraging: intra and intercolonial competition in the strategy of trunk trail arrangement of a harvester ant. Am Nat 145:389–411

    Article  Google Scholar 

  • Albrecht M, Gotelli NJ (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia 126:134–141

    Article  Google Scholar 

  • Andersen AN, Patel AD (1994) Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia 98:15–24

    Article  Google Scholar 

  • Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:15–29

    Article  Google Scholar 

  • Andrade T, Marques GVD, Del-Claro K (2007) Diversity of ground dwelling ants in Cerrado: an analysis of temporal variations and distinctive physiognomies of vegetation (Hymenoptera: Formicidae). Sociobiology 50:1–14

    Google Scholar 

  • Armbrecht I, Perfecto I, Vandermeer J (2004) Enigmatic biodiversity correlations: ant diversity responds to diverse resources. Science 304:284–286

    Article  PubMed  CAS  Google Scholar 

  • Arnan X, Gaucherel C, Andersen AN (2011a) Dominance and species co-occurrence in highly diverse ant communities: a test of the interstitial hypothesis and discovery of a three-tiered competition cascade. Oecologia 166:783–794

    Article  PubMed  Google Scholar 

  • Arnan X, Bosch J, Comas L, Gracia M, Retana J (2011b) Habitat determinants of abundance, structure and composition of flying Hymenoptera communities in mountain old-growth forests. Insect Conserv Divers 4:200–211

    Article  Google Scholar 

  • Azevedo IFP, Nunes YRF, Veloso MDM, Neves WVN, Fernandes GW (2009) Preservação estratégica para recuperar o São Francisco. Sci Am Bras 7:74–79

    Google Scholar 

  • Baccaro FB, Ketelhut SM, Morais JW (2011) Efeitos da distância entre iscas nas estimativas de abundância e riqueza de formigas em uma floresta de terra-firme na Amazônia Central. Acta Amazonica 41:115–122

    Google Scholar 

  • Baccaro FB, Ketelhut SM, Morais JW (2010) Resource distribution and soil moisture content can regulate bait control in an ant assemblage in Central Amazonian forest. Austral Ecol 35:274–281

    Article  Google Scholar 

  • Benson W, Harada AY (1988) Local diversity of tropical and temperature ant faunas (Hymenoptera: Formicidae). Acta Amazonica 18:275–289

    Google Scholar 

  • Bestelmeyer BT, Wiens JA (2001) Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecol Appl 11:1123–1140

    Article  Google Scholar 

  • Brandão CRF, Silva RR, Feitosa RM (2011) Cerrado ground-dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zoologia 28:379–387

    Article  Google Scholar 

  • Brandão CRF, Silva RR, Delabie JHC (2012) Neotropical ants (Hymenoptera) functional groups: nutritional and applied implications. In: Panizzi AR, Parra JRP (eds) Insect bioecology and nutrition for integrated pest management. CRC, Boca Raton, pp 213–236

  • Beck J, Holloway JD, Khen CV, Kitching IJ (2012) Diversity partitioning confirms the importance of beta components in tropical rainforest Lepidoptera. Am Nat 180:64–74

    Article  Google Scholar 

  • Bruhl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14:285–297

    Article  Google Scholar 

  • Campos RI, Lopes CT, Magalhães WCS, Vasconcelos HL (2008) Estratificação vertical de formigas em cerrado “strictu sensu” no Parque Estadual da Serra de Caldas Novas, Goiás, Brasil. Iheringia Ser Zool 98:311–316

    Article  Google Scholar 

  • Campos RI, Vasconcelos HL, Ribeiro SP, Neves FS, Soares JP (2006) Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29:442–450

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples, version 8.20. http://viceroy.eeb.uconn.edu/estimateS

  • Corrêa MM, Fernandes WD, Leal IR (2006) Diversidade de formigas epigéicas (Hymenoptera: Formicidae) em Capões do Pantanal Sul Matogrossense: relações entre riqueza de espécies e complexidade estrutural da área. Neotrop Entomol 35:724–730

    Article  PubMed  Google Scholar 

  • Crawley MJ (2002) Statistical computing: an introduction to data analysis using S-Plus. Wiley, UK, 772 p

  • Dejean A, Corbara B, Fernández F, Delabie JHC (2003) Mosaicos de hormigas arbóreas en bosques y plantaciones tropicales. In: Fernández F (ed) Introduccion a las hormigas de la region Neotropical. Instituto de Investigacion de Recursos Biologicos Alexander Von Humboldt, Bogotá, pp 149–158

  • Delabie JHC, Fowler HG (1995) Soil and litter cryptic ant assemblages of Bahian cocoa plantations. Pedobiologia 39:423–433

    Google Scholar 

  • Delabie JHC, Agosti D, Nascimento IC (2000) Litter ant communities of the Brazilian Atlantic rain forest region. In: Agosti D, Majer JD, Tennant L, Schultz T (eds) Sampling ground-dwelling ants: cases studies from the world’s rain forests. Bulletin 18. Curtin University School of Environmental Biology, pp 1–17

  • Deslippe RJ, Savolainen R (1995) Mechanisms of competition in a guild of formicine ants. Oikos 72:67–73

    Article  Google Scholar 

  • Dunn RR, Agosti D, Andersen AN, Arnan X, Bruhl CA, Cerdá X, Ellison AM, Fisher BL, Fitzpatrick MC, Gibb H, Gotelli NJ, Gove AD, Guénard B, Janda M, Kaspari M, Laurent EJ, Lessard JP, Longino JT, Majer JD, Menke SB, McGlynn TP, Parr CL, Philpott SM, Pfeiffer M, Retana J, Suarez AV, Vasconcelos HL, Weiser MD, Sanders NJ (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–33

    Article  PubMed  Google Scholar 

  • Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35

    Article  Google Scholar 

  • Fowler HG, Delabie JHC, Brandão CRF, Forte LC, Vasconcelos HL (1991) Ecologia nutricional de formigas. In: Panizzi AR, Parra JRP (eds) Ecologia nutricional de insetos e suas implicações no manejo de pragas. CNPq, Manole/Brasilia, pp 131–209

  • Fraser SEM, Dytham C, Mayhew PJ (2008) The effectiveness and optimal use of Malaise traps for monitoring parasitoid wasps. Insect Conserv Divers 1:22–31

    Article  Google Scholar 

  • Gibb H (2005) The effect of a dominant ant, Iridomyrmex purpureus, on resource use by ant assemblages depends on microhabitat and resource type. Austral Ecol 30:856–867

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2004) Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85:648–657

    Article  Google Scholar 

  • Guerra TJ, Camarota F, Castro FS, Schwertner CF, Grazia J (2011) Trophobiosis between ants and Eurystethus microlobatus Ruckes 1966 (Hemiptera: Heteroptera: Pentatomidae) a cryptic, gregarious and subsocial stinkbug. J Nat Hist 45:1101–1117

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontologia Electronica 4(1):9

  • Harada AY, Bandeira AG (1994) Estratificação e densidade de invertebrados em solo arenoso sob floresta primária e plantios arbóreos na Amazônia Central durante a estação seca. Acta Amazonica 24:103–118

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA, 732 p

  • INMT (Instituto Nacional de Meteorologia) (2011) Instituto Nacional de Meteorologia. http://www.inmet.com.br. Accessed 5 January 2011

  • Kalacska MER, Sanchez-Azofeifa GA, Calvo-Alvarado JC, Rivard B, Quesada M (2005) Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forests. Biotropica 37:486–496

    Article  Google Scholar 

  • Kaspari M (2001) Taxonomic level, trophic biology and the regulation of local abundance. Glob Ecol Biogeogr 10:229–244

    Article  Google Scholar 

  • Kaspari M (2000) A primer in ant ecology. In: Agosti D, Majer JD, Alonso E, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 9–24

  • Kaspari M, Alonso L, O’Donnell S (2000) Three energy variables predict ant abundance at a geographical scale. Proc R Soc Lond B Biol Sci 267:485–489

    Article  CAS  Google Scholar 

  • Kaspari M, Ward PS, Yuan M (2004) Energy gradients and the geographic distribution of local ant diversity. Oecologia 140:407–413

    Article  PubMed  Google Scholar 

  • Kempf WW (1978) A preliminary zoogeographical analysis of a regional ant fauna in Latin America. Stud Entomol 20:43–62

    Google Scholar 

  • Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164

    Article  Google Scholar 

  • Leal IR (2003) Diversidade de formigas em diferentes unidades de paisagem da Caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e conservação da Caatinga. Editora Universitária UFPE, Recife, pp 435–461

  • Leal IR, Filgueiras BKC, Gomes JP, Iannuzzi L, Andersen AN (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodivers Conserv 21:1687–1701

    Article  Google Scholar 

  • Majer JD, Delabie JHC, Smith MRB (1994) Arboreal ant community patterns in Brazilian cocoa farms. Biotropica 26:73–83

    Article  Google Scholar 

  • Marinho CGS, Zanetti R, Delabie JHC, Schlindwein MN, Ramos LS (2002) Diversidade de formigas (Hymenoptera: Formicidae) da serapilheira em eucaliptais (Myrtaceae) e área de Cerrado de Minas Gerais. Neotrop Entomol 31:187–195

    Article  Google Scholar 

  • Marques GVD, Del Claro K (2006) The ant fauna in a Cerrado area: the influence of vegetation structure and seasonality (Hymenoptera: Formicidae). Sociobiology 47:235–252

    Google Scholar 

  • Moreira VSS, Del-Claro K (2005) The outcomes of an ant-treehopper association on Solanum lycocarpum St. Hill: increased membracid fecundity and reduced damage by chewing herbivores. Neotrop Entomol 34:881–887

    Article  Google Scholar 

  • Nadkarni NM (1994) Diversity of species and interactions in the upper tree canopy of forest ecosystems. Am Zool 34:70–78

    Google Scholar 

  • Nestel D, Dickschen F (1990) The foraging kinetics of ground ant communities in different Mexican coffee agroecosystems. Oecologia 84:58–63

    Article  Google Scholar 

  • Neves FS, Braga RF, Espírito-Santo MM, Delabie JHC, Fernandes GW (2010) Diversity of arboreal ants in a Brazilian tropical dry forest: effects of seasonality and successional stages. Sociobiology 56:177–194

    Google Scholar 

  • Neves FS, Fagundes M, Sperber CF, Fernandes GW (2011) Tri-trophic level interactions affect host plant development and abundance of insect herbivores. Arthropod–Plant Interact 5:351–357

    Article  Google Scholar 

  • Nunes YRF, Azevedo IFP, Neves WVN, Veloso MDM, Souza RA, Fernandes GW (2009) Pandeiros: o Pantanal Mineiro. MG Biota 2:4–17

    Google Scholar 

  • Oliveira PE (1998) Fenologia e biologia reprodutiva das espécies de cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. Embrapa-CPAC, Planaltina, pp 169–192

  • Oliveira PS, Pie MR (1998) Interaction between ants and plants bearing extrafloral nectaries in cerrado vegetation. An Soc Entomol Bras 27:161–176

    Article  Google Scholar 

  • Pacheco R, Vasconcelos HL (2012) Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodivers Conserv 21:797–809

    Article  Google Scholar 

  • Parr CL (2008) Dominant ants can control assemblage species richness in a South African savanna. J Anim Ecol 77:1191–1198

    Article  PubMed  Google Scholar 

  • Perfecto I, Vandermeer J (1996) Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia 108:577–582

    Article  Google Scholar 

  • Perry DR (1978) A method of access into the crowns of emergent and canopy trees. Biotropica 10:155–157

    Article  Google Scholar 

  • Pianka ER (1994) Evolutionary ecology. Harper Collins College Publishers, New York, 486 p

  • R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN3-900051-07-0. http://www.R-project.org

  • Reyes-López J, Ruiz N, Fernández-Haeger J (2003) Community structure of ground-ants: the role of single trees in a Mediterranean pastureland. Acta Oecol 24:195–202

    Article  Google Scholar 

  • Ribas CR, Schoereder JH (2007) Ant communities, environmental characteristics and their implications for conservation in the Brazilian Pantanal. Biodivers Conserv 16:1511–1520

    Article  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol 28:305–314

    Article  Google Scholar 

  • Ribeiro JF, Walter BMT (2001) As matas de galeria no contexto do bioma Cerrado. In: Ribeiro JF, Fonseca CEL, Souza-Silva JC (eds) Cerrado: caracterização e recuperação de matas de galeria. Embrapa-CPAC, Planaltina, pp 29–47

  • Rizzini CT (1997) Tratado de Fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Âmbito Cultural, Rio de Janeiro

  • Rojas P, Fragoso C (2000) Composition, diversity, and distribution of a Chihuahuan Desert ant community (Mapimí, México). J Arid Environ 44:213–227

    Article  Google Scholar 

  • Rosumek FB, Silveira FAO, Neves FS, Barbosa NP, Diniz L, Oki Y, Pezzini F, Fernandes GW, Cornelissen T (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549

    Article  PubMed  Google Scholar 

  • Sanders NJ, Gordon DM (2002) Resources and the flexible allocation of work in the desert ant, Aphaenogaster cockerelli. Insectes Soc 49:371–379

    Article  Google Scholar 

  • Sanders NJ, Lessard J-P, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob Ecol Biogeogr 16:640–649

    Article  Google Scholar 

  • Santos RM, Vieira FA, Fagundes M, Nunes YRF, Gusmão E (2007) Riqueza e similaridade florística de oito remanescentes florestais no norte de Minas Gerais. Rev Árvore 31:135–144

    Article  Google Scholar 

  • Savolainen R, Vepsäläinen K (1988) A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 51:135–155

    Article  Google Scholar 

  • Scariot A, Sevilha AC (2005) Biodiversidade, estrutura e conservação de florestas estacionais deciduais no Cerrado. In: Scariot A, Felfili JM, Souza-Silva JC (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasília, pp 121–139

  • Schmidt FA, Ribas CR, Schoereder JH (2013) How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecol Indic 24:158–166

    Article  Google Scholar 

  • Schmidt FA, Diehl E (2008) What is the effect of soil use on ant communities? Neotrop Entomol 37:381–388

    Article  PubMed  Google Scholar 

  • Schmidt FA, Solar RRC (2010) Hypogeic pitfall traps: methodological advances and remarks to improve the sampling of a hidden ant fauna. Insectes Soc 57:261–266

    Article  Google Scholar 

  • Schoereder JH, Sobrinho TG, Madureira MS, Ribas CR, Oliveira PS (2010) The arboreal ant community visiting extrafloral nectaries in the Neotropical cerrado savanna. Terrestrial Arthropod Rev 3:3–27

    Article  Google Scholar 

  • Silva RR, Brandão CRF (1999) Formigas (Hymenoptera: Formicidae) como indicadoras da qualidade ambiental e da biodiversidade de outros invertebrados terrestres. Biotemas 12:55–73

    Google Scholar 

  • Silva RR, Brandão CR, Silvestre R (2004) Similarity between Cerrado localities in central and southeastern Brazil based on the dry season bait visitors ant fauna. Stud Neotrop Fauna Environ 39:191–199

    Article  Google Scholar 

  • Silva RR, Brandão CRF (2010) Morphological patterns and community organization in leaf-litter ant assemblages. Ecol Monographs 80:107–124

    Article  Google Scholar 

  • Silva RR, Silvestre R (2004) Riqueza da fauna de formigas (Hymenoptera: Formicidae) que habita as camadas superficiais do solo em Seara, Santa Catarina. Pap Avulsos Zool 44:1–11

    Google Scholar 

  • Silvestre R, Brandão CRF (2003) Grupos funcionales de hormigas: El caso de los gremios del Cerrado, Brasil. In: Fernández F (ed) Introducción a las hormigas de la región Neotropical, 1st ed. Instituo de Investigación de Recurso Biológicos Alexandre Von Humboldt, Bogotá, pp 113–143

  • Soares SDA, Antonialli-junior WF, Lima-junior SE (2010) Diversidade de formigas epigéicas (Hymenoptera, Formicidae) em dois ambientes no Centro-Oeste do Brasil. Rev Bras Entomol 54:76–81

    Article  Google Scholar 

  • Speight MR, Hunter MD, Watt AD (2008) Ecology of insects: concepts and applications. Wiley-Blackwell, Oxford, 640 p

  • Sturrock K, Rocha J (2000) A multidimensional scaling stress evaluation table. Field Method 12:49–60

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tobin JE (1997) Competition and coexistence of ants in a small patch of rainforest canopy in Peruvian Amazonia. J N Y Entomol Soc 105:105–112

    Google Scholar 

  • Vance CC, Smith SM, Malcolm JR, Huber J, Bellocq MI (2007) Differences between forest type and vertical strata in the diversity and composition of Hymenopteran families and Myramid genera in northeastern temperate forests. Environ Entomol 36:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Vargas AB, Mayhé-Nunes AJ, Queiroz JM, Souza GO, Ramos EF (2007) Efeitos de fatores ambientais sobre a mirmecofauna em comunidade de Restinga no Rio de Janeiro, RJ. Neotrop Entomol 36:28–37

    Article  PubMed  Google Scholar 

  • Vasconcelos HL, Carvalho KS, Delabie JHC (2001) Landscape modifications and ant communities. In: Bierregaard RO, Jr Gascon C, Lovejoy TE, Mesquita R (eds) Lessons from Amazonia: the ecology and conservation of a fragmented forest. Yale University Press, New Haven, pp 199–207

  • Vasconcelos HL, Vilhena JMS (2006) Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: a comparison of forests and savannas. Biotropica 38:100–106

    Article  Google Scholar 

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9

    Article  Google Scholar 

  • Ward PS (2006) Ants. Curr Biol 16:152–155

    Article  Google Scholar 

  • Weiser MD, Sanders NJ, Agosti D, Andersen AN, Ellison AM, Fisher BL, Gibb H, Gotelli NJ, Gove AD, Gross K, Guénard B, Janda M, Kaspari M, Lessard JP, Longino JT, Majer JD, Menke SB, McGlynn TP, Parr CL, Philpott SM, Retana J, Suarez AV, Vasconcelos HL, Yanoviak SP, Dunn RR (2010) Canopy and litter ant assemblages share similar climate–species density relationships. Biol Lett 6:769–772

    Article  PubMed  Google Scholar 

  • Wenninger EJ, Inouye RS (2008) Insect community response to plant diversity and productivity in a sagebrush–steppe ecosystem. J Arid Environ 72:24–33

    Article  Google Scholar 

  • Wilson EO (2010) Ant ecology. Oxford University Press, New York, 429 p

  • Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:259–266

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers and Patrícia Moreira and Ricardo Campos for useful comments on a previous version of the manuscript. We also thank the Graduate Programs of Unimontes (Programa de Pós-Graduação em Ciências Biológicas (PPGCB) and the Instituto Estadual de Florestas for logistic support. This study was supported by CNPq (ED. 35/2006, no. 555978/2006-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F S Neves.

Additional information

Edited by Kleber Del Claro – UFU

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neves, F.S., Queiroz-Dantas, K.S., da Rocha, W.D. et al. Ants of Three Adjacent Habitats of a Transition Region Between the Cerrado and Caatinga Biomes: The Effects of Heterogeneity and Variation in Canopy Cover. Neotrop Entomol 42, 258–268 (2013). https://doi.org/10.1007/s13744-013-0123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-013-0123-7

Keywords