Skip to main content
Log in

Biotic and Abiotic Factors Affecting Brevicoryne brassicae (L.) (Hemiptera: Aphididae) and the Associated Hyperparasitoid Alloxysta fuscicornis Hartig (Hymenoptera: Figitidae) Morphologies

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

This study investigates the influence of biotic and abiotic factors associated with the morphological development of Brevicoryne brassicae (Linnaeus) and the associated hyperparasitoid Alloxysta fuscicornis (Hartig). The experiment involved the examination of whether aphid size was influenced by their vertical distribution and density on the host plant, as well as whether variations in hyperparasitoid size and symmetry were correlated with those of their aphid hosts. An aphid multivariate size index was obtained using principal component analysis, while symmetry was evaluated in terms of fluctuating asymmetry (FA). Samples were collected in 2007 on cabbage plants cultivated at an experimental farm located in Uberlândia, Minas Gerais, Brazil (18°56′54″ S; 48°12′46″ W). The results demonstrated that the size of B. brassicae was negatively associated with temperature, but not with its vertical distribution on the host plant. Temperature was also negatively correlated with hyperparasitoid size. During warmer periods, females produced large quantities of small-sized offspring, whereas an opposite pattern, i.e. the production of fewer offspring of larger size took place during colder periods. This type of adjustment involving trade-offs between physiological and morphological mechanisms, as well as individual interaction with abiotic environmental factors, such as temperature, can be considered an adaptive plastic response in order to increase the chances of survival at a given locality. The encountered relationship between aphid and hyperparasitoid sizes may be an after effect of their indirectly biotic interaction. Hyperparasitoid FA was dependent on the width of the mummified aphids. However, the hypothesis that temperature and vertical distribution on the host plant might influence FA was not confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Auad AM, Freitas S, Barbosa L (2002) Ocorrência de afídeos em alface (Lactuca sativa L.) em cultivo hidropônico. Neotrop Entomol 31:335–339

    Article  Google Scholar 

  • Babbit GA, Kiltie R, Bolker B (2006) Are the fluctuant assymmetry studies adequately sampled implications of a new model size distribution. Am Nat 167:230–245

    Article  Google Scholar 

  • Bateman MA (1972) The ecology of fruit flies. Annu Rev Entomol 17:493–518

    Article  Google Scholar 

  • Blackman RL, Spencer JM (1994) The effect of temperature on aphid morphology, using a multivariate approach. Environ J Entomol 91:7–22

    Google Scholar 

  • Bjorkstein TA, Fowler K, Pomiankowski A (2000) What does sexual trait FA tell us about stress? Ecol Evol 15:163–166

    Article  Google Scholar 

  • Borgia G (1979) Sexual selection and the evolution of mating systems. In: Blum SM, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic, New York, pp 19–80, 474p

    Google Scholar 

  • Bueno VHP, Sampaio MV (2009) Desenvolvimento e multiplicação de parasitóides de pulgões. In: Bueno VHP (ed) Controle biológico de pragas: produção massal e controle de qualidade. Editora UFLA, Lavras, pp 117–168, 429p

    Google Scholar 

  • Campbell A, Frazer B, Gilbert N, Gutierrez AP, MacKauer M (1974) Temperature requirements of some aphids and their parasites. J App Ecol 11:431–438

    Article  Google Scholar 

  • Cárcamo HA, Floate KD, Lee BL, Beres BL, Clarke FR (2008) Developmental instability in a stem-mining sawfly: can fluctuating asymmetry detect plant host stress in a model system? Oecologia 156:505–513

    Article  PubMed  Google Scholar 

  • Cividanes FJ (2002a) Tabela de fertilidade de Brevicoryne brassicae (L.) (Hemiptera: Aphididae) em condições de campo. Neotrop Entomol 31:419–427

    Article  Google Scholar 

  • Cividanes FJ (2002b) Impacto de inimigos naturais e de fatores meteorológicos sobre uma populaçãode Brevicoryne brassicae (L.) (Hemiptera: Aphididae) em couve. Neotrop Entomol 31:249–255

    Article  Google Scholar 

  • Cividanes FJ (2003) Exigências térmicas de Brevicoryne brassicae e previsão de picos populacionais. Pesq Agropec Bras 38:561–566

    Article  Google Scholar 

  • Cividanes FJ, Santos DMM (2003) Flutuação populacional e distribuição vertical de Brevicoryne brassicae (L.) (Hemíptera: Aphididae) em couve. Bragantia 62:61–67

    Article  Google Scholar 

  • Cole RA (1997) The relative importance of glucosinolates and amino acid to the development of two aphids pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol Exp Appl 85:121–133

    Article  CAS  Google Scholar 

  • De Jong G (2005) Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes. New Phytol 166:101–118

    Article  PubMed  Google Scholar 

  • Dixon AFG (1985) Aphid ecology. Blackie, Glasgow, 157p

    Google Scholar 

  • Ellers J, Bax M, Van Alphen JJM (2001) Seasonal changes in female size and its relation to reproduction in the parasitoid Asobara tabida. Oikos 92:309–314

    Article  Google Scholar 

  • Elliot NC, Burd JD, Kindler SD, Lee JH (1995) Temperature effects on development of three cereal aphid parasitoids (Hymenoptera: Aphidiidae). Great Lakes Entomol 28:137–142

    Google Scholar 

  • Fuller RC, Houle D (2002) Detecting genetic variation in developmental instability by artificial selection on fluctuating asymmetry. J Evol Biol 15:954–960

    Article  Google Scholar 

  • Gilbert N, Raworth DA (1996) Insect and temperature—a general theory. Can Entomol 128:1–13

    Article  Google Scholar 

  • Godoy KB, Cividanes FJ (2002) Tabelas de esperança de vida e fertilidade para Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae) em condições de laboratório e campo. Neotrop Entomol 31:41–48

    Article  Google Scholar 

  • Gorür G, Lomônaco C, Mackenzie A (2005) Phenotypic plasticity in host plant specialization in Aphis fabae. Ecol Entomol 30:657–664

    Article  Google Scholar 

  • Grasswitz TR, Reese BD (1998) Biology and host selection behavior of the aphid hyperparasitoid Alloxysta victrix in association with the primary parasitoid Aphidius colemani and the host aphid Myzus persicae. BioControl 43:261–271

    Article  Google Scholar 

  • Höller C, Borgemeister C, Haardt H, Powell W (1993) The relationship between primary parasitoids and hyperparasitoids of cereal aphids: an analysis of field data. J Anim Ecol 62:12–21

    Article  Google Scholar 

  • Kanegae AP, Lomônaco C (2003) Plasticidade morfológica, reprodutiva e assimetria flutuante de Myzus persicae (Sulzer) (Hemiptera: Aphididae) sob diferentes temperaturas. Neotrop Entomol 32:37–43

    Article  Google Scholar 

  • Lomônaco C, Germanos E (2001) Variações fenótipicas em Musca domestica L. (Dipetra: Muscidae) em resposta à competição larval por alimento. Neotrop Entomol 30:223–231

    Article  Google Scholar 

  • Manly BFJ (1994) Multivariate statistical methods. Chapman & Hall, London, p 215

    Google Scholar 

  • Markow TA (1995) Evolutionary ecology and developmental instability. Annu Rev Entomol 40:105–120

    Article  CAS  Google Scholar 

  • Møller AP, Swadle JP (1997) Asymmetry, developmental stability and evolution. Oxford University Press, Oxford, p 304

    Google Scholar 

  • Palmer RA, Strobeck C (1986) Fluctuating asymmetry: measurement analysis, patterns. Ann Rev Ecol 17:391–421

    Article  Google Scholar 

  • Rodrigues FMA, Lomonaco C, Christoffersen ML (2009) Habitat partition, and variation of size and symmetry of three sympatric species of Alpheus (Decapoda: Caridae) along an intertidal gradient in the southwest Atlantic. J Crustac Biol 29:334–342

    Article  Google Scholar 

  • Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore population. Annu Rev Entomol 43:421–447

    Article  PubMed  CAS  Google Scholar 

  • Sampaio MV, Bueno VHP, De Conti BF (2008) The effect of the quality and size of host aphid species on the biological characteristics of Aphidius colemani (Hymenoptera: Braconidae, Aphidiinae). European Journal of Entomology 105:489–494

    Google Scholar 

  • Sullivan DJ, Völkl W (1999) Hyperparasitism: multitrophic ecology and behavior. Annu Rev Entomol 44:291–315

    Article  PubMed  CAS  Google Scholar 

  • Systat (2002) Systat for windows statistics. Version 10.2. SPSS, Chicago

    Google Scholar 

  • Trichilo PJ, Wilson LT, Mack TP (1993) Spatial and temporal dynamics of the threecornered alfalfa hopper (Homoptera: Membracidae) on soybeans. Environ Entomol 22:802–809

    Google Scholar 

  • Van Emden HF (1972) Aphids as phytochemists. In: Harborne JB (ed) Phytochemical ecology. Academic, London, pp 25–43, 272p

    Google Scholar 

  • Van Veen FJF, Müller CB, Adriaanse ICT, Godfray HCJ (2002) Spatial heterogeneity in risk of secondary parasitism in a natural population of an aphid parasitoid. J Anim Ecol 731:463–469

    Article  Google Scholar 

  • Vaz LAL, Tavares MT, Lomônaco C (2004) Diversidade e tamanho de himenópteros parasitóides de Brevicoryne brassicae L. e Aphis nerii Boyer de Foscolombe (Hemiptera: Aphididae). Neotrop Entomol 33:225–230

    Article  Google Scholar 

  • Wang K, Tsai JH, Harrison NA (1997) Influence of temperature on development of Buckthorn aphid (Homoptera: Aphididae). Ann Entomol Soc Am 90:62–68

    Google Scholar 

  • Wang XC, Johnson MW, Daane KM, Yokoyama VY (2009) Larger olive fruit size reduces the efficiency of Psyttalia concolor, as a parasitoid of the olive fruit fly. Bio Control 49:45–51

    Article  Google Scholar 

  • Woods RE, Hercus MJ, Hoffmann AA (1998) Estimating the heritability of fluctuating asymmetry in field Drosophila. Evolution 52:816–824

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, New Jersey, p 718

    Google Scholar 

Download references

Acknowledgments

We thank CAPES for the scholarship granted to KCL Souto, FAPEMIG for the financial support provided via PROJECT Nº EDT-286/07 and finally CAPES, CNPq and FAPESP for providing financial support to INCT-HYMPAR/SUDESTE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleber Cleanto Faria Lemes Souto.

Additional information

Edited by Fernando L Cônsoli – ESALQ/USP

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souto, K.C.F.L., Sampaio, M.V., Pedroso, H.L. et al. Biotic and Abiotic Factors Affecting Brevicoryne brassicae (L.) (Hemiptera: Aphididae) and the Associated Hyperparasitoid Alloxysta fuscicornis Hartig (Hymenoptera: Figitidae) Morphologies. Neotrop Entomol 41, 272–277 (2012). https://doi.org/10.1007/s13744-012-0047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-012-0047-7

Keywords

Navigation