SOWL QL: Querying Spatio-Temporal Ontologies in OWL


We introduce SOWL QL, a query language for spatio-temporal information in ontologies. Building-upon SOWL (Spatio-Temporal OWL), an ontology for handling spatio-temporal information in OWL, SOWL QL supports querying over qualitative spatio-temporal information (expressed using natural language expressions such as “before”, “after”, “north of”, “south of”) rather than merely quantitative information (exact dates, times, locations). SOWL QL extends SPARQL with a powerful set of temporal and spatial operators, including temporal Allen topological, spatial directional and topological operations or combinations of the above. SOWL QL maintains simplicity of expression, and also upward and downward compatibility with SPARQL. Query translation in SOWL QL yields SPARQL queries, implying that querying spatio-temporal ontologies using SPARQL is still feasible but suffers from several drawbacks, the most important of them being that, queries in SPARQL become particularly complicated and users must be familiar with the underlying spatio-temporal representation (the “N-ary relations” or the “4D-fluents” approach in this work). Finally, querying in SOWL QL is supported by the SOWL reasoner which is not part of the standard SPARQL translation. The run-time performance of SOWL QL has been assessed experimentally in a real data setting. A critical analysis of its performance is also presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

  9. 9.


  1. 1.

    Allen J (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843

    Article  MATH  Google Scholar 

  2. 2.

    Anagnostopoulos E, Petrakis EGM, Batsakis S (2014) CHRONOS: improving the performance of qualitative temporal reasoning in OWL. In: ICTAI. IEEE Computer Society, Limasol, Cyprus pp 309–315

  3. 3.

    Arge L, Vitter JS (1996) Optimal dynamic interval management in external memory. In: 37th Annual Symposium on Foundations of Computer Science, pp 560–569

  4. 4.

    Artale A, Franconi E (2000) A survey of temporal extensions of description logics. Ann Math Artif Intell 30(1):171–210

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Baader F (2009) Description logics. In: Reasoning web: Semantic Technologies for Information Systems, 5th International Summer School 2009, Lecture Notes in Computer Science, vol 5689. Springer-Verlag, pp 1–39

  6. 6.

    Balbiani P, Condotta JF, del Cerro LF (1999) A new tractable subclass of the rectangle algebra. In: IJCAI. Morgan Kaufmann, Stockholm, Sweden pp 442–447

  7. 7.

    Baratis E, Petrakis EGM, Batsakis S, Maris N, and Papadakis N (2009) TOQL: temporal ontology querying language. 11th International Symposium on Spatial and Temporal Databases (SSTD), Aalborg, Denmark, pp 450–454

  8. 8.

    Batsakis S. (2011) SOWL: A framework for handling spatio-temporal information in OWL. Ph.D. thesis, Department of Electronic and Computer Engineering, Technical Univercity Of Crete. Accessed 10 May 2016

  9. 9.

    Batsakis S, Petrakis E (2011) SOWL: A framework for handling spatio-temporal information in OWL 2.0. In: 5th International Symposium on Rules: Research Based and Industry Focused (RuleML), pp 242–249

  10. 10.

    Batsakis S, Petrakis E (2012) Imposing restrictions over temporal properties in OWL: a rule-based approach. In: Bikakis A, Giurca A (eds) Rules on the web: research and applications, vol 7438, Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 240–247

  11. 11.

    Batsakis S, Stravoskoufos K, Petrakis E (2011) Temporal reasoning for supporting temporal queries in OWL 2.0. 15th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES), vol 6881, pp 558–567

  12. 12.

    Herring JR (2010) OpenGIS implementation standard for geographic information: simple feature access—Part 2: SQL option. Version 1.2.1. Accessed 10 May 2016

  13. 13.

    Bodirsky M, Chen H (2009) Qualitative temporal and spatial reasoning revisited. J Logic Comput 19:1359–1383

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Budak Arpinar I, Sheth A, Ramakrishnan C, Lynn Usery E, Azami M, Kwan M (2006) Geospatial ontology development and semantic analytics. Trans GIS 10(4):551–575

    Article  Google Scholar 

  15. 15.

    Buneman P, Kostylev E (2010) Annotation algebras for RDFS. In: 2nd International Workshop on the Role of Semantic Web in Provenance Management (SWPM)

  16. 16.

    Bykau S, Mylopoulos J, Rizzolo F, Velegrakis Y (2012) On modeling and querying concept evolution. J Data Semant 1(1):31–55

    Article  Google Scholar 

  17. 17.

    Champin P, Passant A (2010) SIOC in action representing the dynamics of online communities. In: Proceedings of the 6th International Conference on Semantic Systems, ACM, pp 1–7

  18. 18.

    Clementini E, Felice PD, van Oosterom P (1993) A small set of formal topological relationships suitable for end-user interaction. In: Abel DJ, Ooi BC (eds) SSD, Lecture Notes in Computer Science, vol 692. Springer, London, UK pp 277–295

  19. 19.

    Cohn AG, Bennett B, Gooday J, Gotts NM (1997) Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1(3):275–316

    Article  Google Scholar 

  20. 20.

    Daskalakis C, Karp RM, Mossel E, Riesenfeld S, Verbin E (2011) Sorting and selection in posets. SIAM J Comput 40(3):597–622

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5(2):161–174

    Article  Google Scholar 

  22. 22.

    Frasincar F, Milea V, Kaymak U (2010) tOWL: integrating time in OWL. Semantic web information management: a model-based perspective, pp 225–246

  23. 23.

    Gutierrez C, Hurtado C, Vaisman A (2005) Temporal RDF. In: 2nd European Semantic Web Conference (ESWC 2005), pp 93–107

  24. 24.

    Gutierrez C, Hurtado CA, Vaisman A (2007) Introducing time into RDF. IEEE Trans Knowl Data Eng 19(2):207–218

    Article  Google Scholar 

  25. 25.

    Guting R (1994) An introduction to spatial database systems. VLDB J 3(4):357–399

    Article  Google Scholar 

  26. 26.

    Hart G, Dolbear C (2013) Linked data: a geo-spatial perspective, chap 6. CRC Press

  27. 27.

    Hobbs J, Pan F (2006) Time ontology in OWL. W3C Working Draft, September 2006. Accessed 10 May 2016

  28. 28.

    Jonsson P, Krokhin A (2004) Complexity classification in qualitative temporal constraint reasoning. Artif Intell 160(1–2):35–51

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Klein M, Fensel D (2001) Ontology Versioning on the Semantic Web. In: Proceedings of the International Semantic Web Working Symposium (SWWS), Citeseer, pp 75–91

  30. 30.

    Koubarakis M, Kyzirakos K (2010) Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. Proceedings of the 7th Extended Semantic Web Conference (ESWC), pp 425–439

  31. 31.

    Krokhin A, Jeavons P, Jonsson P (2003) Reasoning about temporal relations: the tractable subalgebras of Allen’s interval algebra. J ACM (JACM) 50(5):591–640

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Lutz C (2003) Description logics with concrete domains-a survey. In: Advances in modal logics, vol 4. King’s College Publications

  33. 33.

    Lutz C, Wolter F, Zakharyashev M (2008) Temporal description logics: a survey. In: 15th International Symposium on Temporal Representation and Reasoning, TIME, IEEE, pp 3–14

  34. 34.

    Mainas N, Petrakis EGM (2014) CHOROS 2: improving the performance of qualitative spatial reasoning in OWL. In: ICTAI. IEEE Computer Society, limasol, Cyprus pp 283–290

  35. 35.

    Montello D, Frank A (1996) Modeling directional knowledge and reasoning in environmental space: testing qualitative metrics. Constr Cogn Maps GeoJ Libr 32(3):321–344

    Article  Google Scholar 

  36. 36.

    Nebel B, Burckert H (1995) Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. J ACM (JACM) 42(1):43–66

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Nikolaou C, Koubarakis M (2013) Querying incomplete geospatial information in RDF. In: Advances in spatial and temporal databases. 13th International Symposium (SSTD), Proceedings, Munich, Germany, August 21–23, 2013, pp 447–450

  38. 38.

    Noy N, Rector A (2006) Defining N-ary relations on the semantic web. Accessed 10 May 2016

  39. 39.

    Open Geospatial Consortium (2012) OGC GeoSPARQL—a geographic query language for RDF Data. Version 1.0 Accessed 10 May 2016

  40. 40.

    Perez J, Arenas M, Gutierrez C (2006) The semantics and complexity of SPARQL. In: 5th International Semantic Web Conference, ISWC

  41. 41.

    Perry M, Jain P, Sheth AP (2011) SPARQL-ST: extending SPARQL to support spatiotemporal queries. In: Ashish N, Sheth AP (eds) Geospatial semantics and the semantic web, no. 12 in semantic web and beyond, chap 3. Springer, New York, pp 61–86

  42. 42.

    Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer-Verlag, New York

  43. 43.

    Prud’hommeaux E, Seaborne A (2006) SPARQL query language for RDF. W3C working draft 4. Accessed 10 May 2016

  44. 44.

    Pujari A, Sattar A (1999) A new framework for reasoning about points, intervals and durations. In: International Joint Conference On Artificial Intelligence, vol 16. Lawrence Erlbaum Associates Ltd, pp 1259–1267

  45. 45.

    Prez J, Arenas M, Gutierrez C (2010) nSPARQL: a navigational language for RDF. J Web Semant 8(4):255–270

    Article  Google Scholar 

  46. 46.

    Randell D, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. Principles of knowledge representation and reasoning. Proceedings of the 3rd International Conference (KR 92), vol 92, pp 165–176

  47. 47.

    Renz J (1999) Maximal tractable fragments of the region connection calculus: a complete analysis. Int Jt Conf Artif Intell 16:448–455

    Google Scholar 

  48. 48.

    Renz J, Mitra D (2004) Qualitative direction calculi with arbitrary granularity. In: Trends in artificial intelligence: 8th Pacific Rim International Conference on Artificial Intelligence, Proceedings (PRICAI), vol 3157, pp 65–74

  49. 49.

    Renz J, Nebel B (2007) Qualitative spatial reasoning using constraint calculi. In: Aiello M, Pratt-Hartmann I, van Benthem J (eds) Handbook of spatial logics. Springer, Netherlands, pp 161–215

  50. 50.

    Rigaux P, Scholl M, Voisard A (2002) Spatial databases—with applications to GIS. Elsevier, San Francisco

  51. 51.

    Sellis T (1999) Research issues in spatio-temporal database systems. Adv Spat Databases 1651:5–11

    Article  Google Scholar 

  52. 52.

    Shaw R, Troncy R, Hardman L (2009) Lode: linking open descriptions of events. In: Gómez-Pérez A, Yu Y, Ding Y (eds) The semantic web. Springer, Berlin, pp 153–167

  53. 53.

    Sirin E, Parsia B, Grau B, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. Web Semant Sci Serv Agents World Wide Web 5(2):51–53

    Article  Google Scholar 

  54. 54.

    Skiadopoulos S, Koubarakis M (2005) On the consistency of cardinal direction constraints. Artif Intell 163(1):91–135

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    Stocker M, Sirin E (2009) PelletSpatial: a hybrid RCC-8 and RDF/OWL reasoning and query engine. In: 6th International Workshop on OWL: Experiences and Directions (OWLED). Springer-Verlag New York, Inc, pp 2–31

  56. 56.

    Stravoskoufos K (2013) SOWL QL: querying spatio-temporal ontologies in OWL 2.0 . MSc Thesis, Department of Electronic and Computer Engineering, Technical University of Crete. Accessed 10 May 2016

  57. 57.

    Tao C, Wei W, Solbrig H, Savova G, Chute C (2010) CNTRO: a semantic web ontology for temporal relation inferencing in clinical narratives. In: AMIA Annual Symposium Proceedings, vol 2010. American Medical Informatics Association, pp 787–91

  58. 58.

    Tappolet J, Bernstein A (2009) Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Proceedings of the 6th European Semantic Web Conference on The Semantic Web: Research and Applications. Springer-Verlag, pp 308–322

  59. 59.

    Van Beek P (1989) Approximation algorithms for temporal reasoning. Proceedings of the 11th International Joint Conference on Artificial Intelligence-vol 2, pp 1291–1296

  60. 60.

    van Beek P, Cohen R (1990) Exact and approximate reasoning about temporal relations. Comput Intell 6:132–144

    Article  Google Scholar 

  61. 61.

    Vilain M, Kautz H (1986) Constraint propagation algorithms for temporal reasoning. In: Proceedings of the 5th National Conference on Artificial Intelligence, pp 377–382

  62. 62.

    Welty C, Fikes R (2006) A reusable ontology for fluents in OWL. In: Formal ontology in information systems. Proceedings of the 4th International Conference (FOIS), pp 226–336

  63. 63.

    Yannakakis M (1982) The complexity of the partial order dimension problem. SIAM J Algebraic Discret Methods 3(3):351–358

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Euripides G. M. Petrakis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stravoskoufos, K., Petrakis, E.G.M., Mainas, N. et al. SOWL QL: Querying Spatio-Temporal Ontologies in OWL. J Data Semant 5, 249–269 (2016).

Download citation


  • Query language
  • Spatio-temporal ontology