Journal on Data Semantics

, Volume 3, Issue 3, pp 169–188 | Cite as

Modeling CrowdSourcing Scenarios in Socially-Enabled Human Computation Applications

  • Alessandro Bozzon
  • Piero Fraternali
  • Luca GalliEmail author
  • Roula Karam
Original Article


User models have been defined since the 1980s, mainly for the purpose of building context-based, user-adaptive applications. However, the advent of social networked media, serious games, and crowdsourcing/human computation platforms calls for a more pervasive notion of user model, capable of representing the multiple facets of social users and performers, including their social ties, interests, capabilities, activity history, and topical affinities. In this paper, we define a comprehensive model able to cater for all the aspects relevant for applications involving social networks and human computation; we capitalize on existing social user models and content description models, enhancing them with novel models for human computation and gaming activities representation. Finally, we report on our experiences in adopting the proposed model in the design and implementation of three socially enabled human computation platforms.


Crowdsourcing Human computation  User modeling  Social networks Serious games 



This work has been partially supported by the BPM4People project (, funded by the Capacities e Research for SMEs Program of the Research Executive Agency of the European Community; the CUbRIK project (, funded by the European Community Seventh Framework Programme (FP7/2007–2013); by the Dutch national program COMMIT (


  1. 1.
    Abel F, Celik I, Hauff C, Hollink L, Houben G-J (2011) U-sem: semantic enrichment, user modeling and mining of usage data on the social web. CoRR, abs/1104.0126Google Scholar
  2. 2.
    Acerbis R, Bongio A, Brambilla M, Butti S, Ceri S, Fraternali P (2008) Web applications design and development with webml and webratio 5.0. In: Paige RF, Meyer B (eds) Objects, components, models and patterns, volume 11 of Lecture Notes in Business Information Processing. Springer, Berlin, pp 392–411Google Scholar
  3. 3.
    Aroyo L, Houben G-J (2010) User modeling and adaptive semantic web. Semantic Web 1(1–2):105–110Google Scholar
  4. 4.
    Axenopoulos A, Daras P, Malassiotis S, Croce V, Lazzaro M, Etzold J, Grimm P, Massari A, Camurri A, Steiner T, Tzovaras D (2012) I-search: a unified framework for multimodal search and retrieval, pp 130–141Google Scholar
  5. 5.
    Baeza-Yates RA, Ceri S, Fraternali P, Giunchiglia F (eds) (2012) Proceedings of the first international workshop on crowdsourcing web search, Lyon, volume 842 of CEUR workshop proceedings. CEUR-WS.orgGoogle Scholar
  6. 6.
    Berkovsky S, Kuflik T, Ricci F (2009) Cross-representation mediation of user models. User Model User Adapt Interact 19(1–2):35–63Google Scholar
  7. 7.
    Bozzon A, Brambilla M, Ceri S (2012) Answering search queries with crowdsearcher. In: WWW, pp 1009–1018Google Scholar
  8. 8.
    Bozzon A, Catallo I, Ciceri E, Fraternali P, Martinenghi D, Tagliasacchi M, Tagliasacchi M (2012) A framework for crowdsourced multimedia processing and querying. In: CrowdSearch, pp 42–47Google Scholar
  9. 9.
    Bozzon A, Mauri A, Brambilla M (2012) A model-driven approach for crowdsourcing search. In: CrowdSearch, pp 31–35Google Scholar
  10. 10.
    Brambilla M, Cabot J, Wimmer M (2012) Model-driven software engineering in practice. Synthesis lectures on software engineering. Morgan & Claypool PublishersGoogle Scholar
  11. 11.
    Brambilla M, Fraternali P, Ruiz CKV (2012) Combining social web and bpm for improving enterprise performances: the bpm4people approach to social bpm. In: Mille et al. [32], pp 223–226Google Scholar
  12. 12.
    Brambilla M, Fraternali P, Vaca C (2011) BPMN and design patterns for engineering social BPM solutions. In: Proceedings of the fourth international workshop on BPM and social software, BPMSGoogle Scholar
  13. 13.
    Breslin JG, Harth A, Bojars U, Decker S (2005) Towards semantically-interlinked online communities. In: Proceedings of the second European conference on the semantic web: research and applications, ESWC’05. Springer, Berlin, pp 500–514Google Scholar
  14. 14.
    Brickley D, Miller L (2010) FOAF Vocabulary Specification 0.97. Namespace documentGoogle Scholar
  15. 15.
    Carmagnola F, Cena F, Gena C (2011) User model interoperability: a survey. User Model User Adapt Interact 21(3):285–331Google Scholar
  16. 16.
    Cena F, Dattolo A, De Luca EW, Lops P, Plumbaum T, Vassileva J (2011) Semantic adaptive social web, pp 176–180Google Scholar
  17. 17.
    Daras P, Axenopoulos A, Darlagiannis V, Tzovaras D, Le Bourdon X, Joyeux L, Verroust-Blondet A, Croce V, Steiner T, Massari A, Camurri A, Morin S, Mezaour A-D, Sutton L, Spiller S (2011) Introducing a unified framework for content object description. IJMIS 2(3/4):351–375Google Scholar
  18. 18.
    Birgit P, Kapsammer E, Mitsch S et al (2011) A first step towards a conceptual reference model for comparing social user profilesGoogle Scholar
  19. 19.
    Fraternali P et al (2012) The CuBRIK project: human-enhanced time-aware multimedia, search. [32], pp 259–262Google Scholar
  20. 20.
    Geurts J, van Ossenbrugen J, Hardman L (2005) Requirements for practical multimedia annotation. In: Multimedia and the semantic web, 2nd European semantic web conferenceGoogle Scholar
  21. 21.
    Häsel M (2011) Opensocial: an enabler for social applications on the web Commun. ACM 54(1):139–144Google Scholar
  22. 22.
    Heckmann D, Krnger A (2003) A user modeling markup language (userml) for ubiquitous computing. In: Brusilovsky P, Corbett AT, de Rosis F (eds) User modeling 2003, Proceedings of the 9th international conference, UM 2003, Johnstown, volume 2702 of Lecture Notes in Computer Science. Springer, Berlin, pp 393–397Google Scholar
  23. 23.
    Heckmann D, Schwarzkopf E, Mori J, Dengler D, Kröner A (2007) The user model and context ontology gumo revisited for future web 2.0 extensions. In: Proceedings of the international workshop on contexts and ontologies: representation and reasoning (C & O:RR)Google Scholar
  24. 24.
    Howe J (2006) The rise of crowdsourcing. Wired 14(6)Google Scholar
  25. 25.
    Kappel G, Schönböck J, Wimmer M, Kotsis G, Kusel A, Pröll B, Retschitzegger W, Schwinger W, Wagner RR, Lechner S (2010) Thehiddenu—a social nexus for privacy-assured personalisation brokerage. In: ICEIS, Proceedings of the 12th international conference on enterprise information systems, pp 158–162 Google Scholar
  26. 26.
    Kobsa A (2001) Generic user modeling systems. User Model User Adapt Interact 11(1–2):49–63Google Scholar
  27. 27.
    Law E, von Ahn L (2009) Input-agreement: a new mechanism for collecting data using human computation games. In: Proc. CHI 2009, pp 1197–1206Google Scholar
  28. 28.
    Cheng-Yu L, Soo V-W (2006) The conflict detection and resolution in knowledge merging for image annotation. Inf Process Manage 42(4):1030–1055Google Scholar
  29. 29.
    Little G, Chilton LB, Goldman M, Miller RC (2010) Exploring iterative and parallel human computation processes. In: Proceedings of the ACM SIGKDD workshop on human computation, HCOMP ’10. ACM, New York, pp 68–76Google Scholar
  30. 30.
    Luca Galli PF. Achievement systems explained. In: Serious gaming and social connect. Springer, BerlinGoogle Scholar
  31. 31.
    Mehta B, Niederée C, Stewart A, Degemmis M, Lops P, Semeraro G (2005) Ontologically-enriched unified user modeling for cross-system personalization, pp 119–123Google Scholar
  32. 32.
    Mille A, Gandon FL, Misselis J, Rabinovich M, Staab S (eds) (2012) Proceedings of the 21st world wide web conference, WWW 2012, companion volume. ACM, LyonGoogle Scholar
  33. 33.
    Plumbaum T, Wu S, De Luca EW, Albayrak S (2011) User modeling for the social semantic web. In: SPIM, pp 78–89Google Scholar
  34. 34.
    Powell A, Nilsson M, Naeve A, Johnston P (2005) Dublin core metadata initiative - abstract model, White PaperGoogle Scholar
  35. 35.
    Quinn A, Bederson B (2009) A taxonomy of distributed human computation. Technical reportGoogle Scholar
  36. 36.
    Quinn AJ, Bederson BB (2011) Human computation: a survey and taxonomy of a growing field. In: Proceedings of the 2011 annual conference on human factors in computing systems, CHI ’11, pp 1403–1412Google Scholar
  37. 37.
    Katharina R, Gerald R, Bernstein A (2007) An approach to overcome the personalization bootstrapping problem, cultural user modeling with cumoGoogle Scholar
  38. 38.
    Salembier P, Sikora T (2002) Introduction to MPEG-7: multimedia content description interface. Wiley, New YorkGoogle Scholar
  39. 39.
    Sosnovsky SA, Dicheva D (2010) Ontological technologies for user modelling. IJMSO 5(1):32–71Google Scholar
  40. 40.
    Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: Proceedings of the 16th international conference on world wide web, WWW ’07. ACM, New York, pp 697–706Google Scholar
  41. 41.
    von Ahn L (2006) Games with a purpose. Computer 39:92–94Google Scholar
  42. 42.
    von Ahn L (2009) Human computation. In: CIVRGoogle Scholar
  43. 43.
    Wischenbart M, Mitsch S, Kapsammer E, Kusel A, Pröll B, Retschitzegger W, Schwinger W, Schönböck J, Wimmer M, Lechner S (2012) User profile integration made easy: model-driven extraction and transformation of social network schemas. In: Mille et al. [32], pp 939–948Google Scholar
  44. 44.
    Yamaguchi K, Hadi Kiapour M, Ortiz LE, Berg TL (2012) Parsing clothing in fashion photographs. In: CVPR, IEEE, pp 3570–3577Google Scholar
  45. 45.
    Zhang F, Song Z, Zhang H (2006) Web service based architecture and ontology based user model for cross-system personalization, pp 849–852Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandro Bozzon
    • 1
  • Piero Fraternali
    • 2
  • Luca Galli
    • 2
    Email author
  • Roula Karam
    • 2
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanItaly

Personalised recommendations