Journal on Data Semantics

, Volume 1, Issue 1, pp 1–9 | Cite as

Data Semantics on the Web

  • Heiner StuckenschmidtEmail author


Data Semantics is a wide area that continuously faces new challenges arising from the invention of new information formats and novel applications. An area that is particularly challenging with respect to identifying, representing and using data semantics is the Web. This paper attempts to characterize the nature and challenges of Data Semantics on the Web as an interesting research area to be covered by the Journal on Data Semantics.


Description Logic Intended Meaning Data Semantic Ontology Match Semantic Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aleksovski Z, Klein M, ten Kate W, van Harmelen F (2006) Matching unstructured vocabularies using a background ontology. In: Staab S, Svátek V (eds) Managing knowledge in a world of networks, 15th international conference, EKAW 2006, Podebrady, Czech Republic. Lecture notes in computer science, vol 4248, pp 182–197Google Scholar
  2. 2.
    Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J (2000) Gene ontology: tool for the unification of biology. Nat Genet 25: 25–29CrossRefGoogle Scholar
  3. 3.
    Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (2003) The description logic handbook: theory, implementation, applications. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Berendt B, Hollink L, Hollink V, Luczak-Rösch M, Möller K, Vallet D (2011) Usage analysis and the web of data. SIGIR Forum 45(1): 63–69CrossRefGoogle Scholar
  5. 5.
    Berners-Lee T, Cailliau R, Luotonen A, Nielsen HF, Secret A (1994) The world-wide web. Commun ACM 37(8): 76–82CrossRefGoogle Scholar
  6. 6.
    Bouquet P, Giunchiglia F, van Harmelen F, Serafini L, Stuckenschmidt H (2004) Contextualizing ontologies. Web Semant Sci Serv Agents World Wide Web 1(4): 325–343CrossRefGoogle Scholar
  7. 7.
    Buitelaar P, Cimiano P, Magnini B (eds) (2005) Ontology learning from text: methods, evaluation and applications. IOS Press, AmsterdamGoogle Scholar
  8. 8.
    Cali A, Lukasiewicz T, Predoiu L, Stuckenschmidt H (2009) Tightly coupled probabilistic description logic programs for the semantic web. J Data Semant XII: 95–130CrossRefGoogle Scholar
  9. 9.
    Calvanese D, De Giacomo G, Lembo D, Riccardo Rosati ML (2007) Tractable reasoning and efficient query answering in description logics: the dl-lite family. J Autom Reason 39(3): 385–429zbMATHCrossRefGoogle Scholar
  10. 10.
    Ceri S, Gottlob G, Tanca L (1989) What you always wanted to know about datalog (and never dared to ask). IEEE Trans Knowl Data Eng 1(1): 146–166CrossRefGoogle Scholar
  11. 11.
    Dalvi N, Re C, Suciu D (2009) Probabilistic databases: diamonds in the dirt. Commun ACM 52(7): 86–94CrossRefGoogle Scholar
  12. 12.
    Decker S, Melnik S, van Harmelen F, Fensel D, Klein M, Broekstra J, Erdmann M, Horrocks I (2000) The semantic web: the roles of xml and rdf. IEEE Internet Comput 4(5): 63–74CrossRefGoogle Scholar
  13. 13.
    Doan A, Domingos P, Halevy AY (2003) Learning to match the schemas of data sources: a multistrategy approach. Mach Learn 50(3): 279–301zbMATHCrossRefGoogle Scholar
  14. 14.
    Eckert K, Niepert M, Niemann C, Buckner C, Allen C, Stuckenschmidt H (2010) Crowdsourcing the assembly of concept hierarchies. In: Hunter J, Lagoze C, Giles CL, Li YF (eds) Proceedings of the Joint Conference on Digital Libraries JCDL-2010, ACM, Gold Coast, Queensland, AustraliaGoogle Scholar
  15. 15.
    Euzenat J, Shvaiko P (2007) Ontology matching. Springer, BerlinGoogle Scholar
  16. 16.
    Euzenat J, Meilicke C, Stuckenschmidt H, Shvaiko P, Trojahn C (2011) Ontology alignment evaluation initiative: six years of experience. J Data Semant XV:158–192Google Scholar
  17. 17.
    Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans Internet Technol 2(2): 115–150CrossRefGoogle Scholar
  18. 18.
    Flouris G, Huang Z, Jeff Z, Pan HW Dimitris Plexousakis (2006) Inconsistencies, negations and changes in ontologies. In: Proceedings, the twenty-first national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference AAAI-06. AAAI Press, BostonGoogle Scholar
  19. 19.
    Fuhr N (2000) Probabilistic datalog: implementing logical information retrieval for advanced applications. J Am Soc Inf Sci 51(2): 95–110MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gruber T (2008) Collective knowledge systems: where the social web meets the semantic web. Web Semant Sci Services Agents World Wide Web 6(1): 4–13CrossRefGoogle Scholar
  21. 21.
    Gulli A, Signorini A (2005) The indexable web is more than 11.5 billion pages. In: Ellis A, Hagino T (eds) Proceedings of the 14th international conference on World Wide Web (WWW 2005)—Special interest tracks and posters. ACM, ChibaGoogle Scholar
  22. 22.
    Halpin H, J Hayes P, McCusker J, McGuinness D, Thompson1 H (2010) When owl:sameas isn’t the same: An analysis of identity in linked data. In: Patel-Schneider P, Pan Y, Hitzler P, Mika P, Zhang L, Pan J, Horrocks I, Glimm B (eds) The Semantic Web—9th International Semantic Web Conference, ISWC 2010. Lecture notes in computer science, vol 6496, pp 305–320. Springer, ShanghaiGoogle Scholar
  23. 23.
    Hartig O, Bizer C, Freytag JC (2009) Executing sparql queries over the web of linked data. In: Bernstein A, Karger D, Heath T, Feigenbaum L, Maynard D, Motta E, Thirunarayan K (eds) The Semantic Web, 8th international semantic web conference, ISWC 2009, Chantilly, USA. Lecture notes in computer science, vol 5823, pp 293–309Google Scholar
  24. 24.
    Hassell J, Aleman-Meza B, Arpinar I (2006) Ontology-driven automatic entity disambiguation in unstructured text. In: Cruz I, Decker S, Allemang D, Preist C, Schwabe D, Mika P, Uschold M, Aroyo L (eds) The Semantic Web, 5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA. Lecture notes in computer science, vol 4273, pp 44–57Google Scholar
  25. 25.
    He B, Patel M, Zhang Z, Chang KCC (2007) Accessing the deep web. Commun ACM 50(5): 95–101CrossRefGoogle Scholar
  26. 26.
    Hendler J (2001) Agents and the semantic web. Intell Syst 16(2): 30–37CrossRefGoogle Scholar
  27. 27.
    Horrocks I, Patel-Schneider P, van Harmelen F (2003) From shiq and rdf to owl: the making of a web ontology language. Web Semant Sci Services Agents World Wide Web 1(1): 7–26CrossRefGoogle Scholar
  28. 28.
    Huang Z, van Harmelen F, ten Teije A (2005) Reasoning with inconsistent ontologies. In: Pack-Kaelbling L, Saffiotti A (eds) Proceedings of the nineteenth international joint conference on artificial intelligence, IJCAI-05, Edinburgh, Scotland, UK, pp 454–459Google Scholar
  29. 29.
    Kashyap V, Sheth A (1998) Semantic heterogeneity in global information systems: the role of metadata, context and ontologies. In: Cooperative information systems trends and directions. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Lehmann J, Auer S, Bühmann L, Tramp S (2011) Class expression learning for ontology engineering. Web Semant Sci Serv Agents World Wide Web 9(1): 71–81CrossRefGoogle Scholar
  31. 31.
    Lindberg D, Humphreys B, McCray A (1993) The unified medical language system. Methods Inf Med 32(4): 281–291Google Scholar
  32. 32.
    Lukasiewicz T, Straccia U (2008) Managing uncertainty and vagueness in description logics for the semantic web. Web Semant Sci Serv Agents World Wide Web 6(4): 291–308CrossRefGoogle Scholar
  33. 33.
    Lutz C, Toman D, Wolter F (2009) Conjunctive query answering in the description logic el using a relational database system. In: Boutilier C (ed) Proceedings of the 21st international joint conference on artificial intelligence IJCAI 2009, Pasadena, California, pp 2070–2075Google Scholar
  34. 34.
    Mangold C (2007) A survey and classification of semantic search approaches. J Int J Metadata Semant Ontol 2(1): 23–34CrossRefGoogle Scholar
  35. 35.
    Matuszek C, Cabral J, Witbrock M, Deoliveira J (2006) An introduction to the syntax and content of cyc. In: Proceedings of the 2006 AAAI Spring symposium on formalizing and compiling background knowledge and its applications to knowledge representation and question answering, vol 3864, pp 44–49. AAAI Press, Menlo ParkGoogle Scholar
  36. 36.
    Meilicke C, Stuckenschmidt H, Tamilin A (2007) Repairing ontology mappings. In: Proceedings of the twenty-second AAAI conference on artificial intelligence, pp 1408–1413. AAAI Press, VancouverGoogle Scholar
  37. 37.
    Motik B, Rosati R (2010) Reconciling description logics and rules. J ACM 57(5): 1–63MathSciNetCrossRefGoogle Scholar
  38. 38.
    Niles I, Pease A (2001) Towards a standard upper ontology. In: Welty C, Smith B (eds) Proceedings of the 2nd international conference on formal ontology in information systems, ACM, Ogunquit, MaineGoogle Scholar
  39. 39.
    Novacek V, Handschuh S, Decker S (2011) Getting the meaning right: a complementary distributional layer for the web semantics. In: Aroyo L, Welty C, Alani H, Taylor J, Bernstein A, Kagal L, Noy NF, Blomqvist E (eds) 10th International semantic web conference ISWC 2011 TSW. Lecture notes in computer science, vol 7031, pp 504–519. Springer, BonnGoogle Scholar
  40. 40.
    Noy N, Klein M (2004) Ontology evolution: not the same as schema evolution. Knowl Inf Syst 6(4): 428–440CrossRefGoogle Scholar
  41. 41.
    Saint-Dizier P, Viegas E (eds) (1995) Computational lexical semantics. Cambridge University Press, CambridgeGoogle Scholar
  42. 42.
    Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intell Syst 21(3): 96–101CrossRefGoogle Scholar
  43. 43.
    Sheth A (1996) Panel: Data semantics: what, where and how? In: Meersman R, Mark L (eds) Database applications semantics, Proceedings of the Sixth IFIP TC-2 Working Conference on Data Semantics (DS-6), Chapman & Hall, Stone Mountain, Atlanta, Georgia, USA, IFIP Conference Proceedings, vol 74Google Scholar
  44. 44.
    Siorpaes K, Hepp M (2008) Games with a purpose for the semantic web. IEEE Intell Syst 23(3): 50–60CrossRefGoogle Scholar
  45. 45.
    Specia L, Motta E (2007) Integrating folksonomies with the semantic web. In: Franconi E, Kifer M, May W (eds) The semantic web: research and applications, 4th European Semantic Web Conference, ESWC 2007, Springer, Innsbruck, Austria. Lecture notes in computer science, vol 4519, pp 624–639Google Scholar
  46. 46.
    Stoilos G, Simou N, Stamou G, Kollias S (2006) Uncertainty and the semantic web. IEEE Intell Syst 21(5): 84–87CrossRefGoogle Scholar
  47. 47.
    Tablan V, Damljanovic D, Bontcheva K (2008) A natural language query interface to structured information. In: Bechhofer S, Hauswirth M, Hoffmann J, Koubarakis M (eds) The semantic web: research and applications, 5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain. Lecture notes in computer science, vol 5021, pp 361–375Google Scholar
  48. 48.
    Thomas K, Landauer PF, Laham D (1998) An introduction to latent semantic analysis. Discourse Processes 25(2–3):259–284. Special Issue: quantitative approaches to semantic knowledge representationsGoogle Scholar
  49. 49.
    Turney P, Pantel P (2010) From frequency to meaning: vector space models of semantics. J Artif Intell Res 37: 141–188MathSciNetzbMATHGoogle Scholar
  50. 50.
    Veltman F (1984) Data semantics. In: Groenendijk J, Janssen T, Stokhof M (eds) Truth, interpretation, and information: selected papers from the third Amsterdam colloquium, Walter de Gruyter, pp 43–65Google Scholar
  51. 51.
    Völker J, Niepert M (2011) Statistical schema induction. In: Proceedings of the 8th extended semantic web conference (ESWC). Lecture notes in compuer science, vol 6643, pp 124–138Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.University of MannheimMannheimGermany

Personalised recommendations