Skip to main content
Log in

Synthesis and structural characterization of nickel(II) coordination complexes with mixed-ligand systems: exploring π−π stacking and hydrogen bonding in supramolecular assemblies

  • Communication Papers
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Two coordination complexes [Ni(Hpydco)2(bpy)] (1) and [Ni(pydco)(phen)(H2O)2]·4.5H2O 0.5CH3OH (2) have been synthesized using a mixed-ligand system including pyridine-2,5-dicarboxylic acid N-oxide (H2pydco) as an O-donor ligand and 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) as a chelating N-donor ligand and NiCl2.6H2O as a source for Ni ions. The crystal structures of 1 and 2 form discrete complexes in which extensive π−π stacking interactions between aromatic rings of the N-donor ligands resulted in the formation of one dimensional (1D) chain-like structures. The chains are connected by hydrogen bonds to expand the structures into 2D-supramolecular networks. Hirshfeld surface analysis and Density Functional Theory (DFT) calculations were included to rationalize the relative strength of the π-stacking assemblies observed in both complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. G.R. Desiraju, Crystal engineering from molecules. to materials. J mol. Struct. 656(1–3), 5–15 (2003)

    Article  CAS  Google Scholar 

  2. T.S. Thakur, R. Dubey, G.R. Desiraju, Crystal Structure and Prediction. Annu. Rev. Phys. Chem. 66, 21–42 (2015). https://doi.org/10.1146/annurev-physchem-040214-121452

    Article  CAS  PubMed  Google Scholar 

  3. D. Braga, F. Grepioni, L. Maini, S. D’Agostino, From solid-state structure and dynamics to crystal engineering. Eur. J. Inorg. Chem. 2018, 3597–3605 (2018). https://doi.org/10.1002/ejic.201800234

    Article  CAS  Google Scholar 

  4. H. Schneider, Noncovalent interactions: a brief account of a long history. J. Phys. Org. Chem. 35, e4340 (2022). https://doi.org/10.1002/poc.4340

    Article  CAS  Google Scholar 

  5. M.C. Storer, C.A. Hunter, The surface site interaction point approach to non-covalent interactions. Chem. Soc. Rev. 51, 10064–10082 (2022). https://doi.org/10.1039/D2CS00701K

    Article  CAS  PubMed  Google Scholar 

  6. Y. Wang, J. Lv, P. Gao, Y. Ma, Crystal structure prediction via efficient sampling of the potential energy surface. Acc. Chem. Res. 55, 2068–2076 (2022). https://doi.org/10.1021/acs.accounts.2c00243

    Article  CAS  PubMed  Google Scholar 

  7. Q. Zhu, S. Hattori, Organic crystal structure prediction and its application to materials design. J. Mater. Res. 38, 19–36 (2023). https://doi.org/10.1557/s43578-022-00698-9

    Article  CAS  Google Scholar 

  8. X. Yin, C.E. Gounaris, Search methods for inorganic materials crystal structure prediction. Curr. Opin. Chem. Eng. 35, 100726 (2022). https://doi.org/10.1016/j.coche.2021.100726

    Article  Google Scholar 

  9. I. Alkorta, J. Elguero, A. Frontera, Not only hydrogen bonds: other noncovalent interactions. Crystals 10, 180 (2020). https://doi.org/10.3390/cryst10030180

    Article  CAS  Google Scholar 

  10. S. Roca, L. Hok, R. Vianello, M. Borovina, M. Đaković, L. Karanović, D. Vikić-Topić, Z. Popović, The role of non-covalent intermolecular interactions on the diversity of crystal packing in supramolecular dihalopyridine–silver(I) nitrate complexes. CrystEngComm 22, 7962–7974 (2020). https://doi.org/10.1039/D0CE01257B

    Article  CAS  Google Scholar 

  11. K.T. Mahmudov, A.V. Gurbanov, F.I. Guseinov, M.F.C. Guedes da Silva, Noncovalent interactions in metal complex catalysis. Coord. Chem. Rev. 387, 32–46 (2019). https://doi.org/10.1016/j.ccr.2019.02.011

    Article  CAS  Google Scholar 

  12. M. Bazargan, M. Mirzaei, A. Franconetti, A. Frontera, On the preferences of five-membered chelate rings in coordination chemistry: insights from the cambridge structural database and theoretical calculations. Dalton Trans. 48, 5476–5490 (2019). https://doi.org/10.1039/C9DT00542K

    Article  CAS  PubMed  Google Scholar 

  13. A. Bencini, V. Lippolis, 1,10-Phenanthroline: a versatile building block for the construction of ligands for various purposes. Coord. Chem. Rev. 254, 2096–2180 (2010). https://doi.org/10.1016/j.ccr.2010.04.008

    Article  CAS  Google Scholar 

  14. C. Kaes, A. Katz, M.W. Hosseini, Bipyridine: the most widely used ligand. a review of molecules comprising at least two 2, 2’-bipyridine units. Chem. Rev. 100, 3553–3590 (2000). https://doi.org/10.1021/cr990376z

    Article  CAS  PubMed  Google Scholar 

  15. H. Constable, The early years of 2,2’-Bipyridine—a ligand in its own lifetime. Molecules 24, 3951 (2019). https://doi.org/10.3390/molecules24213951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P.G. Sammes, G. Yahioglu, 1,10-Phenanthroline: a versatile ligand. Chem. Soc. Rev. 23, 327 (1994). https://doi.org/10.1039/cs9942300327

    Article  CAS  Google Scholar 

  17. H.S. Moradi, E. Momenzadeh, M. Asar, S. Iranpour, A.R. Bahrami, M. Bazargan, H. Hassanzadeh, M.M. Matin, M. Mirzaei, Bioactivity studies of two copper complexes based on pyridinedicarboxylic acid N-oxide and 2,2′-bipyridine. J. Mol. Struct. 1249, 131584 (2022). https://doi.org/10.1016/j.molstruc.2021.131584

    Article  CAS  Google Scholar 

  18. H. Alizadeh, M. Mirzaei, A.S. Saljooghi, V. Jodaian, M. Bazargan, J.T. Mague, R.M. Gomila, A. Frontera, Coordination complexes of zinc and manganese based on pyridine-2,5-dicarboxylic acid N -oxide: DFT studies and antiproliferative activities consideration. RSC Adv. 11, 37403–37412 (2021). https://doi.org/10.1039/D1RA08258B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, The cambridge structural database. Acta Cryst. B 72, 171–179 (2016). https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  20. M. Bazargan, M. Mirzaei, A.S. Hamid, Z.H. Kafshdar, H. Ziaekhodadadian, E. Momenzadeh, J.T. Mague, D.M. Gil, R.M. Gomila, A. Frontera, On the importance of π-stacking interactions in the complexes of copper and zinc bearing pyridine-2,6-dicarboxylic acid N-oxide and N-donor auxiliary ligands. CrystEngComm 24, 6677–6687 (2022). https://doi.org/10.1039/D2CE00656A

    Article  CAS  Google Scholar 

  21. M. Bazargan, M. Mirzaei, M. Aghamohamadi, M. Tahmasebi, A. Frontera, Supramolecular assembly of a 2D coordination polymer bearing pyridine-N-oxide-2,5-dicarboxylic acid and copper ion: X-ray crystallography and DFT calculations. J. Mol. Struct. 1202, 127243 (2020). https://doi.org/10.1016/j.molstruc.2019.127243

    Article  CAS  Google Scholar 

  22. D Frisch, MJ. Trucks, GW. Schlegel, HB Scuseria, GE Robb, MA Cheeseman, JR Scalmani, G Barone, V Petersson, GA Nakatsuji, HLiX. Caricato, M Marenich, AV Bloino, J Janesko, BG Gomperts, R Mennucci, B Hratchian, HP Gaussian 16, Revision A.01; Gaussian, Inc.: Wallingford, CT, USA, 2016, (n.d.)

  23. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  24. F. Weigend, Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057 (2006). https://doi.org/10.1039/b515623h

    Article  CAS  PubMed  Google Scholar 

  25. C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999). https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  26. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970). https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  27. R.F.W. Bader, A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991). https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  28. T.A. Keith, TK Gristmill Software, AIMAll (overland park, USA, 2013)

    Google Scholar 

  29. J. Contreras-García, E.R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D.N. Beratan, W. Yang, NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011). https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D. Sadhukhan, M. Maiti, G. Pilet, A. Bauzá, A. Frontera, S. Mitra, Hydrogen bond, π–π, and CH–π interactions governing the supramolecular assembly of some hydrazone ligands and their MN II complexes – structural and theoretical interpretation. Eur. J. Inorg. Chem. 2015, 1958–1972 (2015). https://doi.org/10.1002/ejic.201500030

    Article  CAS  Google Scholar 

  31. G. Mahmoudi, A. Bauzá, M. Amini, E. Molins, J.T. Mague, A. Frontera, On the importance of tetrel bonding interactions in lead(II) complexes with (iso)nicotinohydrazide based ligands and several anions. Dalton Trans. 45, 10708–10716 (2016). https://doi.org/10.1039/C6DT01947A

    Article  CAS  PubMed  Google Scholar 

  32. W. APEX3, SADABS and SAINT, Bruker-AXS, Madison, (2016)

  33. G. G. M. Sheldrick, TWINABS. University of Göttingen, Göttingen

  34. G.M. Sheldrick, SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  35. G.M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  36. M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009). https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  37. J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun 37, 3814 (2007). https://doi.org/10.1039/b704980c

    Article  CAS  Google Scholar 

  38. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst. B 60, 627–668 (2004). https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  39. P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka, M.A. Spackman, CrystalExplorer : a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 54, 1006–1011 (2021). https://doi.org/10.1107/S1600576721002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Mirzaei, F. Sadeghi, K. Molčanov, J.K. Zarȩba, R.M. Gomila, A. Frontera, Recurrent supramolecular motifs in a series of acid-base adducts based on pyridine-2,5-dicarboxylic Acid N -oxide and organic bases: inter- and intramolecular hydrogen bonding. Cryst. Growth Des. 20, 1738–1751 (2020). https://doi.org/10.1021/acs.cgd.9b01475

    Article  CAS  Google Scholar 

  41. Z. Hosseini-Hashemi, M. Mirzaei, A. Jafari, P. Hosseinpour, M. Yousefi, A. Frontera, M. Lari Dashtbayaz, M. Shamsipur, M. Ardalani, Effects of N -oxidation on the molecular and crystal structures and properties of isocinchomeronic acid, its metal complexes and their supramolecular architectures: experimental CSD survey, solution and theoretical approaches. RSC Adv. 9, 25382–25404 (2019). https://doi.org/10.1039/C9RA05143K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Bazargan, M. Mirzaei, H. Eshtiagh-Hosseini, J.T. Mague, A. Bauzá, A. Frontera, Synthesis, X-ray characterization and DFT study of a novel Fe(III)–pyridine-2,6-dicarboxylic acid N-oxide complex with unusual coordination mode. Inorg. Chim. Acta 449, 44–51 (2016). https://doi.org/10.1016/j.ica.2016.04.044

    Article  CAS  Google Scholar 

  43. M. Mirzaei, H. Eshtiagh-Hosseini, M. Bazargan, F. Mehrzad, M. Shahbazi, J.T. Mague, A. Bauzá, A. Frontera, Two new copper and nickel complexes of pyridine-2,6-dicarboxylic acid N-oxide and their proton transferred salts: solid state and DFT insights. Inorg. Chim. Acta 438, 135–145 (2015). https://doi.org/10.1016/j.ica.2015.08.030

    Article  CAS  Google Scholar 

  44. M. Shahbazi, F. Mehrzad, M. Mirzaei, H. Eshtiagh-Hosseini, J.T. Mague, M. Ardalani, M. Shamsipur, Synthesis, single crystal X-ray characterization, and solution studies of Zn(II)-, Cu(II)-, Ag(I)- and Ni(II)-pyridine-2,6-dipicolinate N-oxide complexes with different topologies and coordination modes. Inorg. Chim. Acta 458, 84–96 (2017). https://doi.org/10.1016/j.ica.2016.12.030

    Article  CAS  Google Scholar 

  45. M. Mirzaei, H. Eshtiagh-Hosseini, M. Bazargan, Syntheses and X-ray crystal structure studies of four new coordination complexes and salts based on proton-transferred pyridine-2,6-dicarboxylic acid N-oxide. Res. Chem. Intermed. 41, 9785–9803 (2015). https://doi.org/10.1007/s11164-015-1965-x

    Article  CAS  Google Scholar 

  46. M Ataei, V Jodaeian, M Mirzaei, ASh Saljooghi, A Gholizadeh, (2019) Syntheses characterization and antiproliferative study of some complexes containing pyridine-2,6-dicarboxylic acid N-oxide. Nashrieh Shimi va Mohandesi Shimi Iran.

  47. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, in Handbook of Vibrational Spectroscopy. ed. by P.R. Griffiths (Wiley, Chichester, 2006), pp.1872–1892. https://doi.org/10.1002/0470027320.s4104

    Chapter  Google Scholar 

  48. M. Naeem Ahmed, K.A. Yasin, S. Aziz, S.U. Khan, M.N. Tahir, D.M. Gil, A. Frontera, Relevant π-hole tetrel bonding interactions in ethyl 2-triazolyl-2-oxoacetate derivatives: hirshfeld surface analysis and DFT calculations. CrystEngComm 22, 3567–3578 (2020). https://doi.org/10.1039/D0CE00335B

    Article  CAS  Google Scholar 

  49. E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285, 170–173 (1998). https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.M. gratefully acknowledges financial support from the Ferdowsi University of Mashhad (Grant No. 3/50211), the Iran Science Elites Federation (ISEF), Zeolite and Porous Materials Committee of Iranian Chemical Society and the Iran National Science Foundation (INSF). This work is supported by Iran Science Elites Federation Grant No. M/98208, M/99397, and M/400230. J.T.M thanks Tulane University for support of the Tulane Crystallography Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mirzaei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1828 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, A.S., Mirzaei, M., Bazargan, M. et al. Synthesis and structural characterization of nickel(II) coordination complexes with mixed-ligand systems: exploring π−π stacking and hydrogen bonding in supramolecular assemblies. J IRAN CHEM SOC (2024). https://doi.org/10.1007/s13738-024-03034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13738-024-03034-6

Keywords

Navigation