Skip to main content
Log in

Exploring tricycle acridines as prospective urease inhibitors: synthesis via microwave assistance, in vitro evaluation, kinetic profiling, and molecular docking investigations

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The current research deals with the microwave-assisted green synthesis of two acridine-based libraries and in vitro urease inhibitory activities. The first library is based on 9-phenyl acridine 113 derivatives, while the second is based on 10H-acridin-9-one 1433 derivatives. All compounds were characterized using FTIR, EI-MS, 1H-NMR, and CHNX techniques. As a result of in vitro evaluation of the synthesized derivatives, most compounds showed potent inhibitory activity against urease with IC50 values ranging from 0.91 to 11.84 µM. Thiourea was used as the standard (IC50 = 19.43 ± 0.18 µM). The structure–activity relationship (SAR) was established to identify key relationships between studied compounds' chemical structure and biological activity. The kinetic studies revealed a competitive mode of inhibition by the compounds. In addition, molecular docking and MD simulation studies were conducted to determine the different interactions between the ligands (compounds) and the enzyme’s active site for the retention time of the ligand into the active pocket of the protein. Thus, it is well-known that inhibiting the urease enzyme activity effectively treats infections caused by Helicobacter pylori. This study has identified that these synthetic acridines may serve as promising lead candidates as urease inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Wei, H. Li, N. Yashir, X. Li, H. Jia, X. Ren, J. Yang, L. Hua, Effects of urease-producing bacteria and eggshell on physiological characteristics and Cd accumulation of pakchoi (Brassica chinensis L.) plants. Environ. Sci. Pollut. Res. 29, 63886–63897 (2022)

    Article  CAS  Google Scholar 

  2. K. Kato, M. Nishida, K. Ito, M. Tomita, Characterization of silica particles prepared via urease-catalyzed urea hydrolysis and activity of urease in sol–gel silica matrix. Appl. Surf. Sci. 262, 69–75 (2012)

    Article  CAS  Google Scholar 

  3. O. Domínguez-Renedoa, M.A. Alonso-Lomilloa, L. Ferreira-Gonc, M.J. Arcos-Martíneza, Development of urease based amperometric biosensors for the inhibitive determination of Hg(II). Talanta 79, 1306–1310 (2009)

    Article  Google Scholar 

  4. H. Li, Y. Song, Q. Li, J. He, Y. Song, Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease. Bioresour. Technol. 167, 269–275 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. N. Rauner, M. Meuris, S. Dech, J. Godde, J.C. Tiller, Urease-induced calcification of segmented polymer hydrogels–a step towards artificial biomineralization. Acta Biomater. 10, 3942–3951 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. B. Krajewska, Properties and their customizing by enzyme immobilizations: a review. J. Mol. Catal. B Enzym. 59, 22–40 (2009)

    Article  CAS  Google Scholar 

  7. A.S. Dheyab, O.I. Aljumaili, N.M. Hussein, Study of virulence factors in urease-positive bacteria isolated from urinary tract infections clinical specimens. J. Pure Appl. Microbiol. 12, 1465–1472 (2018)

    Article  CAS  Google Scholar 

  8. W. Pan, H. Zhang, L. Wang, T. Zhu, B. Chen, J. Fan, Association between Helicobacter pylori infection and kidney damage in patients with peptic ulcer. Ren. Fail. 41, 1028–1034 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G.M. Cox, J. Mukherjee, G.T. Cole, A. Casadevall, J.R. Perfect, Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 68, 443–448 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. I. Konieczna, P. Zarnowiec, M. Kwinkowski, B. Kolesinska, J. Fraczyk, Z. Kaminski, W.C. Kaca, Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. 13, 789–806 (2012)

    Article  CAS  Google Scholar 

  11. H.L. Mobley, R.P. Hausinger, Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Mol. Biol. Rev. 53, 85–108 (1989)

    CAS  Google Scholar 

  12. B. Kalali, R. Mejías-Luque, A. Javaheri, M. Gerhard, H. pylori virulence factors: influence on immune system and pathology. Mediat. Inflamm. (2014). https://doi.org/10.1155/2014/426309

    Article  Google Scholar 

  13. A.B. Mira, H. Cantarella, G.J.M. Souza-Netto, L.A. Moreira, M.Y. Kamogawa, R. Otto, Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst. Environ. 248, 105–112 (2017)

    Article  CAS  Google Scholar 

  14. M. Corrochano-Monsalve, A. Bozal-Leorri, C. Sánchez, C. González-Murua, J. Estavillo, Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. J. Clean. Prod. 289, 125701 (2021)

    Article  CAS  Google Scholar 

  15. W. Zaborska, B. Krajewska, M. Kot, W. Karcz, Quinone-induced inhibition of urease: elucidation of its mechanisms by probing thiol groups of the enzyme. Bioorg. Chem. 35, 233–242 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. B. Krajewska, W. Zaborska, Double mode of inhibition-inducing interactions of 1, 4-naphthoquinone with urease: arylation versus oxidation of enzyme thiols. Bioorg. Med. Chem. 15, 4144–4151 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Zhong-Lu, X. Dong-Mei, Z. Mei, C. Xiao-Shan, L. Xiao-Fang, Synthesis, biological evaluation, and molecular docking studies of 2, 5-substituted-1, 4-benzoquinone as novel urease inhibitors. Bioorg. Med. Chem. 20, 4889–4894 (2012)

    Article  Google Scholar 

  18. M. Kot, W. Karcz, W. Zaborska, 5-Hydroxy-1, 4-naphthoquinone (juglone) and 2-hydroxy-1, 4-naphthoquinone (lawsone) influence on jack bean urease activity: elucidation of the difference in inhibition activity. Bioorg. Chem. 2010(38), 132–137 (2010)

    Article  Google Scholar 

  19. Z. Xiao, Z. Peng, J. Dong, J. He, H. Ouyanga, Y. Feng, C. Lu, W. Lin, J. Wang, Y. Xiang, H. Zhu, Synthesis, structure–activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem. 63, 685–695 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. K.M. Khan, F. Naz, M. Taha, A. Khan, S. Perveen, M.I. Choudhary, W. Voelter, Synthesis and in vitro urease inhibitory activity of N, N′-disubstituted thioureas. Eur. J. Med. Chem. 74, 314–323 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. K.M. Khan, S. Iqbal, M.A. Lodhi, G.M. Maharvi, M.I. Zia-Ullah, A. Choudhary, S.P. Ur-Rahman, Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem. 12, 1963–1968 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. K.M. Khan, F. Rahim, A. Khan, M. Shabeer, S. Hussain, W. Rehman, M. Taha, M. Khan, S. Perveen, M.I. Choudhary, Synthesis and structure–activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease. Bioorg. Med. Chem. 2014(22), 4119–4123 (2014)

    Article  Google Scholar 

  23. Z. You, D. Shi, J. Zhang, Y. Maa, C. Wang, K. Li, Synthesis, structures, and urease inhibitory activities of oxovanadium (V) complexes with Schiff bases. Inorganica Chim. Acta 384, 54–61 (2012)

    Article  CAS  Google Scholar 

  24. Y. Cui, X. Dong, Y. Li, Z. Li, W. Chen, Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3, 5-dibromosalicylaldehyde. Eur. J. Med. Chem. 58, 323–331 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. K.M. Khan, N.A. Rao, M.A. Lodhi, S. Perveen, M.I. Choudhary, W. Voelter, Synthesis and in vitro inhibitory potential towards urease of 9-anilinoacridines and aciridinyl hydrazides. Lett. Drug Des. Discov 4, 114–121 (2007)

    Article  CAS  Google Scholar 

  26. J. Chiron, J. Galy, Reactivity of the acridine ring: a review. Synthesis 3, 313–325 (2004)

    Article  Google Scholar 

  27. R. Kumar, M. Kumari, Chemistry of acridone and its analogues: a review. J. Chem. Pharm. Res. 3, 217–230 (2011)

    CAS  Google Scholar 

  28. L.K. Goni, M.A. Jafar Mazumder, D.B. Tripathy, M.A. Quraishi, Acridine and its derivatives: synthesis, biological, and anticorrosion properties. Materials 15(21), 7560 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C. Chen, Y. Lin, X. Zhang, T. Chou, T. Tsai, N. Kapuriya, R. Kakadiya, T. Su, Synthesis and in vitro cytotoxicity of 9-anilinoacridines bearing N-mustard residue on both anilino and acridine rings. Eur. J. Med. Chem. 44, 3056–3059 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. J.P. Joubert, F.J. Smit, L. Plessis, P.J. Smith, D.D. N’Da, Synthesis and in vitro biological evaluation of aminoacridines and artemisinin–acridine hybrids. Eur. J. Pharm. Sci. 56, 16–27 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. L. Guetzoyan, X. Yu, F. Ramiandrasoa, S. Pethe, C. Rogier, B. Pradines, T. Cresteil, M. Perrée-Fauvet, J. Mah, Antimalarial acridines: synthesis, in vitro activity against P. falciparum and interaction with hematin. Bioorg. Med. Chem. 17, 8032–8039 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. M. Wu, W. Wu, X. Lian, X. Lin, Z. Xie, Synthesis of a novel fluorescent probe and investigation on its interaction with nucleic acid and analytical application. Spectrochim. Acta A 71, 1333–1340 (2008)

    Article  Google Scholar 

  33. R.J. Harrison, S.M. Gowan, L.R. Kelland, S. Neidle, Human telomerase inhibition by substituted acridine derivatives. Bioorg. Med. Chem. Lett. 9, 2463–2468 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. S.M. Arshia, S. Saad, K.M. Perveen, W. Khan, Voelter, microwave-assisted green approach toward the unexpected synthesis of pyrazole-4-carboxylates. J. Iran. Chem. Soc. 13, 1405–1410 (2016)

    Article  CAS  Google Scholar 

  35. L. Xu, C. Gu, R. Li, Y. Yu, T. Wang, A green four-component synthesis of 2-amino-3-cyano-4-aryl-6-sulfanepyrimidine in water solvent using phase-transfer catalyst. J. Iran. Chem. Soc. 13, 597–604 (2016)

    Article  CAS  Google Scholar 

  36. C.J. Li, B.M. Trost, Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. U.S.A. 105(36), 13197–13202 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R.A. Sheldon, Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev. 41(4), 1437–1451 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. A. Zare, A. Hasaninejad, A. Khalafi-Nezhad, A. Parhami, A.R. Moosavi Zare, A solventless protocol for the Michael addition of aromatic amides to α, β-unsaturated esters promoted by microwave irradiation. J. Iran. Chem. Soc. 5, 100–105 (2008)

    Article  CAS  Google Scholar 

  39. R.J. Giguere, T.L. Bray, S.M. Duncan, G. Majetich, Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 27(41), 4945–4948 (1986)

    Article  CAS  Google Scholar 

  40. F. Rodriguez, F.J. Fananas, Constructing molecular complexity from alkynol derivatives: a journey from Fischer carbene complexes to tandem catalysis with gold and other carbophilic Lewis acids. Synlett 24(14), 1757–1771 (2013)

    Article  CAS  Google Scholar 

  41. S. Hameed, K.M. Khan, P. Taslimi, U. Salar, T. Taskin-Tok, D. Kisa, F. Saleem, M. Solangi, M.H.U. Ahmed, K. Rani, Evaluation of synthetic 2-aryl quinoxaline derivatives as α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitors. Int. J. Biol. Macromol. 211, 653–668 (2022)

    Article  CAS  PubMed  Google Scholar 

  42. I.O. Isaac, I. Munir, M. Al-Rashida, S.A. Ali, Z. Shafiq, M. Islam, R. Ludwig, K. Ayub, K.M. Khan, A. Hameed, Novel acridine-based thiosemicarbazones as ‘turn-on’chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study. R. Soc. Open Sci. 5, 180646 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  43. M. Solangi, K.M. Kanwal, F. Khan, S. Saleem, J. Hameed, Z. Iqbal, U. Shafique, Z. Qureshi, M. Ul-Haq, S.P. Taha, Indole acrylonitriles as potential anti-hyperglycemic agents: synthesis, α-glucosidase inhibitory activity and molecular docking studies. Bioorg. Med. Chem. 28(21), 115605 (2020)

    Article  CAS  PubMed  Google Scholar 

  44. A. Hamad, M.A. Khan, I. Ahmad, A. Imran, R. Khalil, T. Al-Adhami, K.M. Rahman, N. Zahra, Z. Shafiq, Probing sulphamethazine and sulphamethoxazole based Schiff bases as urease inhibitors; synthesis, characterization, molecular docking and ADME evaluation. Bioorg. Chem. 105, 104336 (2020)

    Article  CAS  PubMed  Google Scholar 

  45. X. Ye, B. Xu, J. Sun, L. Dai, Y. Shao, Y. Zhang, J. Chen, Pd-catalyzed approach for assembling 9-arylacridines via a cascade tandem reaction of 2-(arylamino) benzonitrile with arylboronic acids in water. J. Org. Chem. 85(20), 13004–13014 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. J.A. Seijas, M.P. Vázquez-Tato, M.M. Martínez, J. Rodríguez-Parga, Microwave enhanced synthesis of acridines. A new aspect in the Bernthsen reaction. Green Chem. 4(4), 390–391 (2002)

    Article  CAS  Google Scholar 

  47. J.J. Lingane, C.G. Swain, M. Fields, Polarographically controlled syntheses, with particular reference to organic chemistry. J. Am. Chem. Soc. 65(7), 1348–1353 (1943)

    Article  CAS  Google Scholar 

  48. K. Palat, M.F. Stevens, Structural studies on bioactive compounds. Part 33. Synthesis of 9-arylacridines by palladium-mediated couplings. J. Chem. Res. 2000(3), 136–137 (2000)

    Article  Google Scholar 

  49. T.N. Kudryavtseva, K.V. Bogatyrev, P.I. Sysoev, K.L., Yar Zar Htun, Synthesis and study of antibacterial activity of some fluorosubstituted acridones derivatives. Fluorine. Notes 2(87), 3–4 (2013)

    Google Scholar 

  50. Z. Meng, R. Zhao, X. Li, C. Ma, C. Xie, Synthesis of acridones through the ring expansion of isatins with arynes oxidated by O2 in air. Tetrahedron 131, 133209 (2023)

    Article  CAS  Google Scholar 

  51. T. Stopka, L. Marzo, M. Zurro, S. Janich, E.U. Wuerthwein, C.G. Daniliuc, J. Aleman, O.G. Mancheno, Oxidative C-H bond functionalization and ring expansion with TMSCHN2: a copper (I)-catalyzed approach to dibenzoxepines and dibenzoazepines. Angew. Chem. Int. Ed. 54(17), 5049–5053 (2015)

    Article  CAS  Google Scholar 

  52. S. Hou, X.J. Lan, W. Li, X.L. Yan, J.J. Chang, X.H. Yang, W. Sun, J.H. Xiao, S. Li, Design, synthesis and biological evaluation of acridone analogues as novel STING receptor agonists. Bioorg. Chem. 95, 103556 (2020)

    Article  CAS  PubMed  Google Scholar 

  53. M. Murahari, P.S. Kharkar, N. Lonikar, Y.C. Mayur, Design, synthesis, biological evaluation, molecular docking and QSAR studies of 2, 4-dimethylacridones as anticancer agents. Eur. J. Med. Chem. 130, 154–170 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. H. Wu, Z. Zhang, Q. Liu, T. Liu, N. Ma, G. Zhang, Syntheses of acridones via copper (II)-mediated relay reactions from o-aminoacetophenones and arylboronic acids. Org. Lett. 20(10), 2897–2901 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. C.Y. Jiang, H. Xie, Z.J. Huang, J.Y. Liang, Y.X. Huang, Q.P. Liang, J.Y. Zeng, B. Zhou, S.S. Zhang, B. Shu, Access to acridones by tandem copper (i)-catalyzed electrophilic amination/Ag (i)-mediated oxidative annulation of anthranils with arylboronic acids. Org. Biomol. Chem. 19(39), 8487–8491 (2021)

    Article  CAS  PubMed  Google Scholar 

  56. S.V. Filip, E. Surducan, M. Vlassa, L.A. Silberg, G. Jucan, Microwave-assisted acridones preparation using an inorganic acidic solid support. Heterocycl. Commun. 2(5), 431–434 (1996)

    Article  CAS  Google Scholar 

  57. L. Szekelhidi, A. Lapat, I. Hornyák, Spectrofluorimetric determination of 2-amino-5-chlorobenzophenone impurity in chlordiazepoxide hydrochloride. Anal. Chim. Acta 227, 309–310 (1989)

    Article  CAS  Google Scholar 

  58. N.S. Nudelman, R.G. De Waisbaum, Kinetic study of the reactions of 2-amino-5-chlorobenzophenone with HCl in MeOH-H2O. J. Phys. Org. Chem. 10(2), 97–106 (1997)

    Article  CAS  Google Scholar 

  59. W.T. Wei, J.F. Sheng, H. Miao, X. Luo, X.H. Song, M. Yan, Y. Zou, Transition-metal-free synthesis of acridones via base-mediated intramolecular oxidative C-H amination. Adv. Synth. Catal. 360(11), 2101–2106 (2018)

    Article  CAS  Google Scholar 

  60. W. Oettmeier, K. Masson, M. Soll, The acridones, new inhibitors of mitochondrial NADH: ubiquinone oxidoreductase (complex I). Biochim. Biophys. Acta Bioenerg. 1099(3), 262–266 (1992)

    Article  CAS  Google Scholar 

  61. W. Oettmeier, K. Masson, M. Soll, E. Reil, Acridones and quinolones as inhibitors of ubiquinone functions in the mitochondrial respiratory chain. Biochem. Soc. Trans. 22(1), 213–216 (1994)

    Article  CAS  PubMed  Google Scholar 

  62. M. Mohammadi-Khanaposhtani, M. Shabani, M. Faizi, I. Aghaei, R. Jahani, Z. Sharafi, N.S. Zafarghandi, M. Mahdavi, T. Akbarzadeh, S. Emami, A. Shafiee, Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1, 2, 4-oxadiazoles as potential anticonvulsant agents. Eur. J. Med. Chem. 112, 91–98 (2016)

    Article  CAS  PubMed  Google Scholar 

  63. M. Panfilov, D. Chernova, I. Khalfina, A. Moskalensky, A. Vorob’ev, Design and synthesis of new acridone-based nitric oxide fluorescent probe. Molecules 26(14), 4340 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Archer, L.B. Rochester, M. Jackman, Alkylaminoalkylamino derivatives of xanthones, acridones and anthraquinones. J. Am. Chem. Soc. 76(2), 588–591 (1954)

    Article  CAS  Google Scholar 

  65. Y. Mei, D. Liu, J. Li, J. Wang, Thermally activated delayed fluorescence materials based on acridin-9 (10H)-one acceptor for organic light-emitting diodes. Dyes Pigm. 207, 110701 (2022)

    Article  CAS  Google Scholar 

  66. M.W. Weatherburn, Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39(8), 971–974 (1967)

    Article  CAS  Google Scholar 

  67. V.Z. Spassov, L. Yan, pH-selective mutagenesis of protein–protein interfaces: in silico design of therapeutic antibodies with prolonged half-life. Proteins 81(4), 704–714 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. G.L. Waldrop, A qualitative approach to enzyme inhibition. Biochem. Mol. Biol. Educ. 37(1), 11–15 (2009)

    Article  CAS  PubMed  Google Scholar 

  69. H.J. Berendsen, D. van der Spoel, R. van Drunen, A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    Article  CAS  Google Scholar 

  70. S. Lee, A. Tran, M. Allsopp, J.B. Lim, J. Hénin, J.B. Klauda, CHARMM36 united atom chain model for lipids and surfactants. J. Phys. Chem. B 118(2), 547–556 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. S. Boonstra, P.R. Onck, E. van der Giessen, CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state. J. Phys. Chem. B 120(15), 3692–3698 (2016)

    Article  CAS  PubMed  Google Scholar 

  72. M.J. Abraham, J.E. Gready, Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 45. J. Comput. Chem. 32(9), 2031–2040 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Pakistan Academy of Sciences, Islamabad, Pakistan, PAS Project No. 111.

Author information

Authors and Affiliations

Authors

Contributions

MM: design, methodology, synthesis, data acquisition, characterization of target compounds, and manuscript writing. MS and FN: writing-review and editing the original draft, spectroscopic data, and manuscript final draft validation. SP: supervised the whole project and authenticated the final draft of the manuscript. US: validation of characterization of spectral data and initial draft of the manuscript. JI, ZH, and AI: performed in vitro urease bioactivity, enzyme kinetics studies, and molecular docking of all compounds. MT: involved in the conceptualization of this research work and the finalization of the manuscript. KMK: conceptualization, overall supervision of the whole project, formal analysis, review, editing, funding acquisition, and authentication of the final draft of the manuscript.

Corresponding authors

Correspondence to Jamshed Iqbal or Khalid Mohammed Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise. No writing assistance was utilized in the production of this manuscript.

Consent for publication

All authors have read and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3208 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, M., Solangi, M., Perveen, S. et al. Exploring tricycle acridines as prospective urease inhibitors: synthesis via microwave assistance, in vitro evaluation, kinetic profiling, and molecular docking investigations. J IRAN CHEM SOC 21, 1163–1183 (2024). https://doi.org/10.1007/s13738-024-02990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02990-3

Keywords

Navigation