Skip to main content
Log in

Development of amphiphilic materials based on electric arc furnace dust: potential application as oxidation catalysts

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

EAF, an electric arc furnace, is a residue from the steel industry that is generated in large quantities and classified as a hazardous substance in many industrialized nations. Hence, exploring novel approaches to repurpose this waste and mitigate its environmental footprint holds significance. This work objective is to transform EAF into a low-cost catalyst and possibly minimize the environmental liability due to its disposal in the soil. Amphiphilic materials were produced using EAF dust coated with carbon structures (EAF/C). The materials were synthesized by chemical vapor deposition at 700, 800, and 900 ℃ using ethanol as the carbon source. X-ray diffraction, thermal analysis, scanning electron microscopy, and Raman spectroscopy analyses suggested that a reduced iron phase was produced by ethanol oxidation, producing carbon structures and iron. The materials showed amphiphilic features and exhibited remarkable magnetic due to iron metallic presence. The materials have strongly interacted with polar, nonpolar, and biphasic mediums. The EAF/C were utilized as biphasic media catalysts for benzyl alcohol oxidation and quinoline, consuming up to 43% of benzyl alcohol and 60% of quinoline. The benzyl alcohol oxidation presented 97% of selectivity for the aldehyde product. The biphasic oxidation Nt-butyl-α-phenylnitrone verified that the materials play a fundamental role in the catalytic transfer of hydroxyl radicals generated from the aqueous to the organic phase. The materials were also tested for oxidation of dye compounds, presenting the removal of 100%. The tests showed that the EAF can be used to obtain novel and efficient catalysts for oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. B. Forder, Crude steel production. (World Steel Association, 2022), https://worldsteel.org/media-centre/press-releases/2022/november-2022-crude-steel-production/. Accessed 14 Sept 2023

  2. M. Zhang, J. Li, Q. Zeng, Q. Mou, Appl. Sci. 9, 3604 (2019). https://doi.org/10.3390/app9173604

    Article  CAS  Google Scholar 

  3. M. Omran, T. Fabritius, E.-P. Heikkinen, J. Sustain. Metall. 5, 331 (2019). https://doi.org/10.1007/s40831-019-00222-0

    Article  Google Scholar 

  4. J.-M. Lee, J.-H. Kim, Y.-Y. Chang, Y.-S. Chang, J. Hazard. Mater. 163, 222 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.081

    Article  ADS  CAS  PubMed  Google Scholar 

  5. H. Pan, X. Zhang, J. Wu, Y. Zhang, L. Lin, G. Yang, S. Deng, L. Li, X. Yu, H. Qi, H. Peng, J. Clean. Prod. 112, 1498 (2016). https://doi.org/10.1016/j.jclepro.2015.05.019

    Article  Google Scholar 

  6. Z. Takacova, J. Piroskova, A. Miskufova, T. Vindt, M. Hezelova, D. Orac, Materials 16, 5004 (2023). https://doi.org/10.3390/ma16145004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.J.B. Dutra, P.R.P. Paiva, L.M. Tavares, Miner. Eng. 19, 478 (2006). https://doi.org/10.1016/j.mineng.2005.08.013

    Article  CAS  Google Scholar 

  8. P. Halli, J. Hamuyuni, M. Leikola, M. Lundström, Miner. Eng. 124, 1 (2018). https://doi.org/10.1016/j.mineng.2018.05.011

    Article  CAS  Google Scholar 

  9. A. Lozano-Lunar, P.R. da Silva, J. de Brito, J.I. Álvarez, J.M. Fernández, J.R. Jiménez, J. Clean. Prod. 219, 818 (2019). https://doi.org/10.1016/j.jclepro.2019.02.145

    Article  Google Scholar 

  10. Q. Yu, T.-J. Liu, Y.-N. Zeng, Y.-T. Wang, J.-G. Li, Y.-R. Wang, L.-L. Kang, R. Ji, F.-P. Wang, X.-M. Wang, B. Liu, S. Cai, Z. Fang, J. Clean. Prod. 414, 137648 (2023). https://doi.org/10.1016/j.jclepro.2023.137648

    Article  CAS  Google Scholar 

  11. H. Ziari, E. Nasiri, A. Amini, O. Ferdosian, Constr. Build. Mater. 203, 188 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.101

    Article  CAS  Google Scholar 

  12. R. Zhu, R. Huang, A. Xu, B. Li, Y. Zang, X. Deng, J. Yang, M. Li, X. Long, J. Iron, Steel Res. Int. 30, 1303 (2023). https://doi.org/10.1007/s42243-023-01004-5

    Article  CAS  Google Scholar 

  13. M.M. Almeida, A.A. Saczk, F. da Silva Felix, E.S. Penido, T.A.R. Santos, A. de Souza Teixeira, F. Magalhães, J. Photochem. Photobiol. A Chem. 438, 114585 (2023). https://doi.org/10.1016/j.jphotochem.2023.114585

    Article  CAS  Google Scholar 

  14. L. Alcaraz, A. Urbieta, M.E. Rabanal, P. Fernández, F.A. López, J. Mater. Res. Technol. 9, 1261 (2020). https://doi.org/10.1016/j.jmrt.2019.11.053

    Article  CAS  Google Scholar 

  15. C.V. Diniz, M.E. da Fonseca, I. Binatti, J.D. Ardisson, E. Lorençon, R.V. Mambrini, Res. Chem. Intermed. 44, 4339 (2018). https://doi.org/10.1007/s11164-018-3390-4

    Article  CAS  Google Scholar 

  16. F.E. Sayın, O. Karatas, İ Özbay, E. Gengec, A. Khataee, Chemosphere 306, 135539 (2022). https://doi.org/10.1016/j.chemosphere.2022.135539

    Article  ADS  CAS  PubMed  Google Scholar 

  17. D.A.S. Costa, R.V. Mambrini, L.E. Fernandez-Outon, W.A.A. Macedo, F.C.C. Moura, Chem. Eng. J. 229, 35 (2013). https://doi.org/10.1016/j.cej.2013.05.099

    Article  CAS  Google Scholar 

  18. E.P. Sajitha, V. Prasad, S.V. Subramanyam, S. Eto, K. Takai, T. Enoki, Carbon 42, 2815 (2004). https://doi.org/10.1016/j.carbon.2004.06.027

    Article  CAS  Google Scholar 

  19. E. Daguerre, A. Guillot, F. Stoeckli, Carbon 39, 1279 (2001). https://doi.org/10.1016/S0008-6223(00)00251-7

    Article  CAS  Google Scholar 

  20. Y. Li, J. Wang, J. He, R. Zeng, M. Miao, Y. Wang, C. Ren, T. Liu, J. Memb. Sci. 672, 121463 (2023). https://doi.org/10.1016/j.memsci.2023.121463

    Article  CAS  Google Scholar 

  21. L. Zhao, X. Dai, B. Li, H. Wang, H. Li, C. Liang, Materials 12, 829 (2019). https://doi.org/10.3390/ma12050829

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. A.R. Martins, A.B. Salviano, A.A.S. Oliveira, R.V. Mambrini, F.C.C. Moura, Environ. Sci. Pollut. Res. Int. 24, 5991 (2017). https://doi.org/10.1007/s11356-016-6692-3

    Article  CAS  PubMed  Google Scholar 

  23. B. Verma, H. Sewani, C. Balomajumder, Environ. Sci. Pollut. Res. Int. 27, 14007 (2020). https://doi.org/10.1007/s11356-020-07988-x

    Article  CAS  PubMed  Google Scholar 

  24. S.F. Blaskievicz, W.G. Endo, A.J.G. Zarbin, E.S. Orth, Appl. Catal. B 264, 118496 (2020). https://doi.org/10.1016/j.apcatb.2019.118496

    Article  CAS  Google Scholar 

  25. R.V. Mambrini, C.Z. Maia, J.D. Ardisson, P.P. de Souza, F.C.C. Moura, New J. Chem. 41, 142 (2017). https://doi.org/10.1039/C6NJ02718K

    Article  CAS  Google Scholar 

  26. Y. Liu, X. Liu, D. Lu, P. Fang, R. Xiong, J. Wei, C. Pan, J. Mol. Catal. A Chem. 392, 208 (2014). https://doi.org/10.1016/j.molcata.2014.05.018

    Article  CAS  Google Scholar 

  27. A. Geng, L. Xu, L. Gan, C. Mei, L. Wang, X. Fang, M. Li, M. Pan, S. Han, J. Cui, Chemosphere 250, 126291 (2020). https://doi.org/10.1016/j.chemosphere.2020.126291

    Article  ADS  CAS  PubMed  Google Scholar 

  28. A.L. Tasca, M. Puccini, E. Stefanelli, R. Gori, A.M.R. Galletti, S. Vitolo, J. Mater. Cycles Waste Manag. 22, 1539 (2020). https://doi.org/10.1007/s10163-020-01045-y

    Article  CAS  Google Scholar 

  29. L. Qu, J. Jia, H. Shi, Z. Luo, New J. Chem. 40, 2895 (2016). https://doi.org/10.1039/C5NJ02545A

    Article  CAS  Google Scholar 

  30. M.-H. Bao, F.-L. Yu, B. Yuan, C.-X. Xie, S.-T. Yu, Bioresources 18, 4032 (2023). https://doi.org/10.15376/biores.18.2.4032-4054

    Article  CAS  Google Scholar 

  31. F. Wang, X. Qin, L. Yang, S. Gao, Q. Wang, Z. Yang, Micro Nano Lett. 13, 1453 (2018). https://doi.org/10.1049/mnl.2018.5068

    Article  CAS  Google Scholar 

  32. T. Ikenoue, T. Yoshida, M. Miyake, R. Kasada, T. Hirato, J. Alloys Compd. 829, 154567 (2020). https://doi.org/10.1016/j.jallcom.2020.154567

    Article  CAS  Google Scholar 

  33. J. Zhang, Z. Zhang, W. Zhu, X. Meng, Appl. Surf. Sci. 502, 144275 (2020). https://doi.org/10.1016/j.apsusc.2019.144275

    Article  CAS  Google Scholar 

  34. M. Kumar, in Carbon Nanotubes-Synthesis, Characterization, Applications. ed. by S. Yellampalli (InTech, London, 2011), pp.147–170

    Google Scholar 

  35. H. Fu, M. Li, J. Chen, R. Zhang, W. Jiang, M. Yuan, H. Chen, X. Li, J. Mol. Catal. A Chem. 292, 21 (2008). https://doi.org/10.1016/j.molcata.2008.06.005

    Article  CAS  Google Scholar 

  36. F. Carvalho Ballotin, M.J. da Silva, A.P. de Carvalho Teixeira, R. Montero Lago, Fuel 274, 117799 (2020). https://doi.org/10.1016/j.fuel.2020.117799

    Article  CAS  Google Scholar 

  37. A.P.C. Teixeira, A.D. Purceno, C.C.A. de Paula, J.C.C. da Silva, J.D. Ardisson, R.M. Lago, J. Hazard. Mater. 248–249, 295 (2013). https://doi.org/10.1016/j.jhazmat.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  38. A.A.S. Oliveira, A.R. Martins, R.V. Ferreira, I.T. Cunha, P. Serp, J.P. de Mesquita, F.C.C. Moura, Catal. Today 344, 247 (2020). https://doi.org/10.1016/j.cattod.2019.04.060

    Article  CAS  Google Scholar 

  39. J.Y. Lee, M. Sung, H. Seo, Y.J. Park, J.B. Lee, S.S. Shin, Y. Lee, K. Shin, J.W. Kim, J. Ind. Eng. Chem. 86, 158 (2020). https://doi.org/10.1016/j.jiec.2020.02.023

    Article  CAS  Google Scholar 

  40. C.V. Diniz, J.V. Nascimento, I. Binatti, P.E. Freitas, R.V. Mambrini, Catal. Today 344, 75 (2020). https://doi.org/10.1016/j.cattod.2018.10.030

    Article  CAS  Google Scholar 

  41. M.D.S. Gomes, M.R.D. Santos, A.B. Salviano, F.G. Mendonça, I.R.S. Menezes, M. Jurisch, G.D. Rodrigues, R. Augusti, P.S. Martins, R.M. Lago, Catal. Today 344, 227 (2020). https://doi.org/10.1016/j.cattod.2019.02.011

    Article  CAS  Google Scholar 

  42. F.F. Dias, A.A.S. Oliveira, A.P. Arcanjo, F.C.C. Moura, J.G.A. Pacheco, Appl. Catal. B 186, 136 (2016). https://doi.org/10.1016/j.apcatb.2015.12.049

    Article  CAS  Google Scholar 

  43. E.C.O. Nassor, R.V. Mambrini, E.N. dos Santos, F.C.C. Moura, M.H. Araujo, J. Inorg. Organomet. Polym. Mater. 28, 2288 (2018). https://doi.org/10.1007/s10904-018-0911-y

    Article  CAS  Google Scholar 

  44. R.V. Mambrini, A.L.M. Saldanha, J.D. Ardisson, M.H. Araujo, F.C.C. Moura, Appl. Clay Sci. 83–84, 286 (2013). https://doi.org/10.1016/j.clay.2013.08.030

    Article  CAS  Google Scholar 

  45. R.V. Mambrini, T.L. Fonseca, A. Dias, L.C.A. Oliveira, M.H. Araujo, F.C.C. Moura, J. Hazard. Mater. 241–242, 73 (2012). https://doi.org/10.1016/j.jhazmat.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  46. V. Sivamaran, V. Balasubramanian, M. Gopalakrishnan, V. Viswabaskaran, A. Gourav Rao, S. Selvamani, Nanomater. Nanotechnol. 12, 184798 (2022). https://doi.org/10.1177/18479804221079495

    Article  CAS  Google Scholar 

  47. M. Vir Singh, A. Kumar Tiwari, R. Gupta, Chem. Sel. 8, e202204715 (2023). https://doi.org/10.1002/slct.202204715

    Article  CAS  Google Scholar 

  48. H. Liu, T. Chen, X. Zou, C. Qing, R.L. Frost, Thermochim. Acta 568, 115 (2013). https://doi.org/10.1016/j.tca.2013.06.027

    Article  CAS  Google Scholar 

  49. H. Liu, T. Chen, Q. Xie, X. Zou, C. Qing, R.L. Frost, Thermochim. Acta 545, 20 (2012). https://doi.org/10.1016/j.tca.2012.06.024

    Article  CAS  Google Scholar 

  50. J.C. Tristão, F.G. de Mendonça, R.M. Lago, J.D. Ardisson, Environ. Sci. Pollut. Res. 22, 856 (2015). https://doi.org/10.1007/s11356-014-2554-z

    Article  CAS  Google Scholar 

  51. C.S. Castro, M.C. Guerreiro, L.C.A. Oliveira, M. Gonçalves, Quim. Nova 32, 1561 (2009). https://doi.org/10.1590/S0100-40422009000600039

    Article  CAS  Google Scholar 

  52. K.-E. Jeong, T.-W. Kim, J.-W. Kim, H.-J. Chae, C.-U. Kim, Y.-K. Park, S.-Y. Jeong, Korean J. Chem. Eng. 30, 509 (2013). https://doi.org/10.1007/s11814-012-0182-1

    Article  CAS  Google Scholar 

  53. X.-A. Huang, K.W. Ng, L. Giroux, M. Duchesne, Metall. Mater. Trans. B 50, 1387 (2019). https://doi.org/10.1007/s11663-019-01569-1

    Article  CAS  Google Scholar 

  54. D.L.A. de Faria, S. VenâncioSilva, M.T. de Oliveira, J. Raman Spectrosc. 28, 873 (1997)

    Article  ADS  Google Scholar 

  55. L. Pi, J. Cai, L. Xiong, J. Cui, H. Hua, D. Tang, X. Mao, Chem. Eng. J. 389, 123420 (2020). https://doi.org/10.1016/j.cej.2019.123420

    Article  CAS  Google Scholar 

  56. X. Yang, X. Wang, J. Qiu, Appl Catal. A Gen 382, 131 (2010). https://doi.org/10.1016/j.apcata.2010.04.046

    Article  CAS  Google Scholar 

  57. C.E. Thomas, D.F. Ohlweiler, A.A. Carr, T.R. Nieduzak, D.A. Hay, G. Adams, R. Vaz, R.C. Bernotas, J. Biol. Chem. 271, 3097 (1996). https://doi.org/10.1074/jbc.271.6.3097

    Article  CAS  PubMed  Google Scholar 

  58. A. Antiñolo, F. Carrillo-Hermosilla, V. Cadierno, J. García-Álvarez, A. Otero, Chem. Cat. Chem. 4, 123 (2012). https://doi.org/10.1002/cctc.201100239

    Article  CAS  Google Scholar 

  59. S. Gazi, R. Ananthakrishnan, RSC Adv. 2, 7781 (2012). https://doi.org/10.1039/C2RA20553J

    Article  ADS  CAS  Google Scholar 

  60. S.R.A. Santos, I.S. Jardim, H.A. Bicalho, I. Binatti, E.M.B. Sousa, A.M. Peres, R.R. Resende, E. Lorençon, J. Colloid Interface Sci. 483, 211 (2016). https://doi.org/10.1016/j.jcis.2016.08.025

    Article  ADS  CAS  PubMed  Google Scholar 

  61. F.C.C. Moura, M.H. Araujo, R.C.C. Costa, J.D. Fabris, J.D. Ardisson, W.A.A. Macedo, R.M. Lago, Chemosphere 60, 1118 (2005). https://doi.org/10.1016/j.chemosphere.2004.12.076

    Article  ADS  CAS  PubMed  Google Scholar 

  62. A. Tiya-Djowe, E. Acayanka, G. Lontio-Nkouongfo, S. Laminsi, E.M. Gaigneaux, J. Environ. Chem. Eng. 3, 953 (2015). https://doi.org/10.1016/j.jece.2014.11.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação do Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), CEFET-MG, and RMQ-MG for financial support.

Funding

The authors declared that there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the studyʼs conception and design. MF and CD performed material preparation, data collection, and some analyses during the student’s dissertation. IB analyzed and interpreted spectra data of the mass spectrometry with electrospray ionization. XRD data were performed and analyzed by JA. RM and EL are the supervisors responsible for the research activity planning and execution and were major contributors to the manuscript writing.

Corresponding author

Correspondence to Raquel Vieira Mambrini.

Ethics declarations

Conflict of interest

The authors declared that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Fonseca, M.E., Diniz, C.V., Binatti, I. et al. Development of amphiphilic materials based on electric arc furnace dust: potential application as oxidation catalysts. J IRAN CHEM SOC 21, 167–177 (2024). https://doi.org/10.1007/s13738-023-02915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02915-6

Keywords

Navigation