Skip to main content
Log in

Novel hybrid ZnS:Mn2+quantum dots/N-methylpolypyrrole fluorescence probe for determination of nitro-aromatic compounds in water samples by using multivariate chemometric methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nitro-aromatic compounds (NACs) pose a significant risk to human health and other living organisms. In this paper, a novel ZnS:Mn2+ quantum dots/N-methylpolypyrrole (ZnS:Mn2+ QDs/NMPPy) hybrid fluorescence probe was synthesized and applied for the simultaneous determination of NACs. Multivariate chemometric methods, including principal component analysis and partial least squares (PLS), were used for analyses of response of sensor to different NACs. The sensing behavior of the hybrid QDs/polymer probe was investigated for common NACs in aqueous media. The PLS model was built under the optimum conditions for the simultaneous determination of a set of NACs. The descriptive and predictive power of the PLS models was assessed using the calculated values of root mean square errors (RMSE) and coefficient of determination (R2). The RMSE and R2 values were in the ranges of 0.01–0.96 and 0.95–0.99 for the training and test set samples, respectively. The linearity was estimated in the concentration range of 0.50–15.00 μM with the detection limit of 481.04, 293.15, 345.47, 458.13, and 131.79 nM for NB, NT, NP, DNP, and TNP, respectively. The results revealed that the designed optical sensor combined with chemometric algorithms could alleviate the problem of spectral overlapping of analytes and provide promising results for the simultaneous determination of NACs without a need for pre-extraction and separation in mixtures and complex media of seawater as actual samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. W. Lu, X. Dong, L. Qiu, Z. Yan, Z. Meng, M. Xue, X. He, X. Liu, Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J. Hazard. Mater. 326, 130–137 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. J.S. Caygill, F. Davis, S.P. Higson, Current trends in explosive detection techniques. Talanta 88, 14–29 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. R. Sun, X. Huo, H. Lu, S. Feng, D. Wang, H. Liu, Recyclable fluorescent paper sensor for visual detection of nitroaromatic explosives. Sens. Actuators B Chem. 265, 476–487 (2018)

    Article  CAS  Google Scholar 

  4. W. Zhang, L.-G. Qiu, Y.-P. Yuan, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J. Hazard. Mater. 221, 147–154 (2012)

    Article  PubMed  Google Scholar 

  5. M. López-López, C. García-Ruiz, Infrared and Raman spectroscopy techniques applied to identification of explosives. TrAC Trends Anal. Chem. 54, 36–44 (2014)

    Article  Google Scholar 

  6. J.M. Sylvia, J.A. Janni, J. Klein, K.M. Spencer, Surface-enhanced Raman detection of 2, 4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal. Chem. 72, 5834–5840 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. H. Wackerbarth, L. Gundrum, C. Salb, K. Christou, W. Viöl, Challenge of false alarms in nitroaromatic explosive detection: a detection device based on surface-enhanced Raman spectroscopy. Appl. Opt. 49, 4367–4371 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. G. Vourvopoulos, P. Womble, Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta 54, 459–468 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. K.E. Sapsford, P.T. Charles, C.H. Patterson, F.S. Ligler, Demonstration of four immunoassay formats using the array biosensor. Anal. Chem. 74, 1061–1068 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. A.M. O’Mahony, J. Wang, Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal. Methods 5, 4296–4309 (2013)

    Article  CAS  Google Scholar 

  11. T.L. Pittman, B. Thomson, W. Miao, Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence. Anal. Chim. Acta 632, 197–202 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. L. Ma, B. Xin, Y. Chen, Direct mass spectrometric detection of trace explosives in soil samples. Analyst 137, 1730–1736 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. R. Luggar, M. Farquharson, J. Horrocks, R. Lacey, Multivariate analysis of statistically poor EDXRD spectra for the detection of concealed explosives. X-Ray Spectrom: Int J 27, 87–94 (1998)

    Article  ADS  CAS  Google Scholar 

  14. M. Tabrizchi, V. ILbeigi, Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 176, 692–696 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. Q. Lu, C. Wu, D. Liu, H. Wang, W. Su, H. Li, Y. Zhang, S. Yao, A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 19, 900–904 (2017)

    Article  CAS  Google Scholar 

  16. J.K. Rajput, “ON-OFF” novel fluorescent chemosensors based on nanoaggregates of triaryl imidazoles for superselective detection of nitro-explosive trinitrophenol in multiple solvent systems. Sens. Actuators B Chem. 259, 990–1005 (2018)

    Article  Google Scholar 

  17. M. Liu, G. Li, Z. Cheng, A novel dual-functional fluorescent chemosensor for the selective detection of 2, 4, 6-trinitrotoluene and Hg2+. New J. Chem. 39, 8484–8491 (2015)

    Article  CAS  Google Scholar 

  18. W. Gong, H. Li, X. Gong, Z. Zhang, Z. Lu, Fabrication of amine functionalized CdSe@ SiO2 nanoparticles as fluorescence nanosensor for highly selective and sensitive detection of picric acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 233, 118221 (2020)

    Article  CAS  Google Scholar 

  19. A. Barati, M. Shamsipur, H. Abdollahi, Hybrid of non-selective quantum dots for simultaneous determination of TNT and 4-nitrophenol using multivariate chemometrics methods. Anal. Methods 6, 6577–6584 (2014)

    Article  CAS  Google Scholar 

  20. V. Sharma, M.S. Mehata, Rapid optical sensor for recognition of explosive 2, 4, 6-TNP traces in water through fluorescent ZnSe quantum dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 260, 119937 (2021)

    Article  CAS  Google Scholar 

  21. F. Abbasi, N. Alizadeh, Highly selective detection of methanol in aqueous and ethanol medium based on hybrid ZnS: Mn2+ quantum dots/N-methylpolypyrrole as a fluorescence switchable sensor. Food Chem. 328, 127091 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. F. Abbasi, A. Akbarinejad, N. Alizadeh, CdS QDs/N-methylpolypyrrole hybrids as fluorescent probe for ultrasensitive and selective detection of picric acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 216, 230–235 (2019)

    Article  ADS  CAS  Google Scholar 

  23. N. Singh, R.C. Mulrooney, N. Kaur, J.F. Callan, Fluorescent recognition of potassium and calcium ions using functionalised CdSe/ZnS quantum dots. J. Fluoresc. 19, 777–782 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. H. Jamalabadi, A. Mani-Varnosfaderani, N. Alizadeh, Detection of alkyl amine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neural network. Sens. Actuators A 280, 228–237 (2018)

    Article  CAS  Google Scholar 

  25. A.C. Small, J.H. Johnston, Novel hybrid materials of cellulose fibres and doped ZnS nanocrystals. Curr. Appl. Phys. 8, 512–515 (2008)

    Article  ADS  Google Scholar 

  26. N. Alizadeh, A. Akbarinejad, Soluble fluorescent polymeric nanoparticles based on pyrrole derivatives: synthesis, characterization and their structure dependent sensing properties. J Mater Chem C 3, 9910–9920 (2015)

    Article  CAS  Google Scholar 

  27. C. Zhang, S. O’Brien, L. Balogh, Comparison and stability of CdSe nanocrystals covered with amphiphilic poly (amidoamine) dendrimers. J. Phys. Chem. B 106, 10316–10321 (2002)

    Article  CAS  Google Scholar 

  28. R.V. Deursen, L.C. Blum, J.-L. Reymond, A searchable map of PubChem. J. Chem. Inf. Model. 50, 1924–1934 (2010)

    Article  PubMed  Google Scholar 

  29. S. Ahmadi, A. Mani-Varnosfaderani, B. Habibi, Characterization of binary edible oil blends using color histograms and pattern recognition techniques. Anal. Bioanal. Chem. Res. 6, 111–124 (2019)

    Google Scholar 

  30. S. Ahmadi, A. Mani-Varnosfaderani, B. Habibi, Motor oil classification using color histograms and pattern recognition techniques. J. AOAC Int. 101, 1967–1976 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. A. Mani-Varnosfaderani, M. Soleimani, N. Alizadeh, Least absolute shrinkage and selection operator as a multivariate calibration tool for simultaneous determination of diphenylamine and its nitro derivatives in propellants. Propellants Explos. Pyrotech. 43, 379–389 (2018)

    Article  CAS  Google Scholar 

  32. D.M. Haaland, E.V. Thomas, Partial least-squares methods for spectral analyses. 2. Application to simulated and glass spectral data. Anal. Chem. 60, 1202–1208 (1988)

    Article  CAS  Google Scholar 

  33. A. Üzer, Ş Sağlam, Y. Tekdemir, B. Ustamehmetoğlu, E. Sezer, E. Erçağ, R. Apak, Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry. Talanta 115, 768–778 (2013)

    Article  PubMed  Google Scholar 

  34. Y. Ni, L. Wang, S. Kokot, Simultaneous determination of nitrobenzene and nitro-substituted phenols by differential pulse voltammetry and chemometrics. Anal. Chim. Acta 431, 101–113 (2001)

    Article  CAS  Google Scholar 

  35. D. Rivera, M. Alam, C. Davis, C. Ho, Characterization of the ability of polymeric chemiresistor arrays to quantitate trichloroethylene using partial least squares (PLS): effects of experimental design, humidity, and temperature. Sens. Actuators B Chem. 92, 110–120 (2003)

    Article  CAS  Google Scholar 

  36. I. Moura, A. de Sá, A.S. Abreu, M. Oliveira, A. Machado, Hybrid nanocomposites of a fluorescent block copolymer and quantum dots: an efficient way for energy transfer. Dyes Pigm. 141, 29–37 (2017)

    Article  CAS  Google Scholar 

  37. C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)

    Article  CAS  Google Scholar 

  38. A. Madani, B. Nessark, R. Boukherroub, M.M. Chehimi, Preparation and electrochemical behaviour of PPy–CdS composite films. J. Electroanal. Chem. 650, 176–181 (2011)

    Article  CAS  Google Scholar 

  39. N. Alizadeh, A. Akbarinejad, A. Ghoorchian, Photophysical diversity of water-soluble fluorescent conjugated polymers induced by surfactant stabilizers for rapid and highly selective determination of 2, 4, 6-trinitrotoluene traces. ACS Appl. Mater. Interfaces 8, 24901–24908 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. F. Allegrini, A.C. Olivieri, IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Anal. Chem. 86, 7858–7866 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Tarbiat Modares University Research Council and the Federation of Scientific Leaders of Iran for their economic support.

Author information

Authors and Affiliations

Authors

Contributions

N. Ghorbanian was involved in investigation, data curation, and writing—original draft. F. Abbasi was involved in investigation. Ahmad Mani-Varnosfaderani was involved in data curation, formal analysis, methodology of software, and writing—review and editing. N. Alizadeh was involved in conceptualization, formal analysis, methodology, supervision, project administration, and writing—review and editing.

Corresponding author

Correspondence to Naader Alizadeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

The authors declare that they have not applicable for that sections of “Ethics approval and consent to participate” and “Consent for publication.”

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2305 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanian, N., Abbasi, F., Mani-Varnosfaderani, A. et al. Novel hybrid ZnS:Mn2+quantum dots/N-methylpolypyrrole fluorescence probe for determination of nitro-aromatic compounds in water samples by using multivariate chemometric methods. J IRAN CHEM SOC 21, 139–149 (2024). https://doi.org/10.1007/s13738-023-02913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02913-8

Keywords

Navigation