Skip to main content
Log in

Fluorescent drug delivery system used for methotrexate and its inhibition against HepG2 cells

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

To improve the bioavailability of methotrexate (MTX), reduce its cytotoxicity, and make its delivery targeted, the drug delivery system based on Eu3+-doped MgAl–LDH as the carrier of MTX was designed. Various characterizations revealed that the MTX was successfully loaded into the Eu3+-doped MgAl–LDH and the MTX loaded in the carrier was about 42.0%. In vitro simulating release suggested that the release of MTX from the drug delivery system exhibited a first rapid release, and followed by a slow release up to 800 min. Fluorescent spectra showed that the Eu3+-doped MgAl–LDH exhibited different fluorescent signals during drug delivery and release. In vitro cytotoxicity of Eu3+-doped MgAl–LDH loaded with MTX on human hepatocellular carcinoma cells (HepG2 cells) investigated through CCK-8 assay showed the blank Eu3+-doped MgAl–LDH did not obviously suppress cell viability after 72 h, indicating significant biocompatibility of the Eu3+-doped MgAl–LDH. While the Eu3+-doped MgAl–LDH loaded with MTX showed higher cytotoxicity than free MTX on HepG2 cells. So the Eu3+-doped MgAl–LDH may be a promising carrier of the methotrexate for treating HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Pacheco, A. Baião, T. Ding, W.G. Cui, B. Sarmento, Recent advances in long-acting drug delivery systems for anticancer drug. Adv. Drug Deliv. Rev. 194, 114724 (2023)

    Article  CAS  PubMed  Google Scholar 

  2. Z. Gharehdaghi, R. Rahimi, S.M. Naghib, F. Molaabasi, Fabrication and application of copper metal–organic frameworks as nanocarriers for pH-responsive anticancer drug delivery. J. Iran. Chem. Soc. 19, 2727–2737 (2022)

    Article  CAS  Google Scholar 

  3. K.H. Wong, D.L. Yang, S.S. Chen, C.W. He, M.W. Chen, Development of nanoscale drug delivery systems of dihydroartemisinin for cancer therapy: a review. Asian J. Pharm. Sci. 17(4), 475–490 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  4. S.Y. Yin, Y.F. Chen, C. Li, X.X. Qiu, Y.J. Zhang, Y.X. Li, Er3+-doped ZnAl-LDH with near-infrared emissions used for the delivery and release of 5-fuorouracil in vitro. J. Iran. Chem. Soc. 19, 3043–3056 (2022)

    Article  CAS  Google Scholar 

  5. R. Ono, T. Kumagae, H. Uojima, S. Teshima, M. Kudo, I. Kitagawa, M. Yoshizawa, Hepatic methotrexate-associated lymphoproliferative disorders identified by multiple liver tumors: a case report and review of the literature. J. Med. Case Rep. 13, 196 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  6. C. Singh, A. Jain, A. Takkar, A. Agarwal, M. Rohilla, D. Lad, A. Khadwal, R. Basher, B.D. Radotra, A. Bal, A. Das, V. Gupta, V. Lal, S. Varma, P. Malhotra, G. Prakash, Successful use of high Dose methotrexate in treatment of primary CNS lymphoma patients without access to serum methotrexate levels monitoring: challenges and outcome. Indian J. Hematol. Blood Transfus. 38(1), 68–77 (2022)

    Article  PubMed  Google Scholar 

  7. S. Ray, S. Saha, B. Sa, J. Chakraborty, In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma. Drug Deliv. Transl. Res. 7(2), 259–275 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. H. Akiyama, H. Takase, F. Kubo, T. Miki, M. Yamamoto, M. Tomita, M. Mochizuki, O. Miura, A. Arai, High-dose methotrexate following intravitreal methotrexate administration in preventing central nervous system involvement of primary intraocular Lymphoma. Cancer Sci. 107, 1458–1464 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. Kougkas, A. Dara, E. Pagkopoulou, A. Dimitriadou, E. Papadimitriou, E. Avdelidou, A. Garyfallos, T. Dimitroulas, Methotrexate induced neurotoxicity in a patient with rheumatoid arthritis on rituximab therapy: a case-based review. Rheumatol. Int. 42(1), 1849–1854 (2022)

    Article  PubMed  Google Scholar 

  10. K. Sun, H.W. Tao, T.L. Ding, Z.R. Li, X.Y. Qiu, M.K. Zhong, Z. Wu, Risk factors for high-dose methotrexate associated toxicities in patients with primary central nervous system lymphoma. J. Clin. Pharm. Ther. 1, 1–9 (2022)

    Google Scholar 

  11. V. Volkov, M.P. Sarria, A.C. Gomes, A. Cavaco-Paulo, Phosphorylated silk fibroin matrix for methotrexate release. Mol. Pharm. 12(1), 75–86 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. G. Abdelbary, M. Haider, In vitro characterization and growth inhibition effect of nanostru- ctured lipid carriers for controlled delivery of methotrexate. Pharm. Dev. Technol. 18, 1159–1168 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. S. Ray, M. Joy, B. Sa, S. Ghosh, J. Chakraborty, pH dependent chemical stability and release of methotrexate from a novel nanoceramic carrier. RSC Adv. 5(49), 39482–39494 (2015)

    Article  CAS  ADS  Google Scholar 

  14. F. Khodadadei, S. Safarian, N. Ghanbari, Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an effificient anticancer drug delivery system. Mater. Sci. Eng. C 79, 280–285 (2017)

    Article  CAS  Google Scholar 

  15. S. Ray, A. Mishra, T.K. Mandal, B. Sa, J. Chakraborty, Optimization of the process parameters for the fabrication of a polymer coated layered double hydroxide-methotrexate nanohybrid for the possible treatment of osteosarcoma. RSC Adv. 5(124), 102574–102592 (2015)

    Article  CAS  ADS  Google Scholar 

  16. H. Aghaei, A.R. Nazar, J. Varshosaz, Double flow focusing microfluidic-assisted based preparation of methotrexate–loaded liposomal nanoparticles: encapsulation efficacy, drug release and stability. Colloids Surf. A Physicochem. Eng. Asp. 614, 126166 (2021)

    Article  CAS  Google Scholar 

  17. B. Khodashenas, M. Ardjmand, A.S. Rad, M.R. Esfahani, Gelatin-coated gold nanoparticles as an effective pH-sensitive methotrexate drug delivery system for breast cancer treatment. Mater. Today Chem. 20, 100474 (2021)

    Article  CAS  Google Scholar 

  18. G.M. Ziarani, P. Mofatehnia, F. Mohajera, A. Badiei, Rational design of yolk–shell nanostructures for drug delivery. RSC Adv. 10(50), 30094–30109 (2020)

    Article  Google Scholar 

  19. A.I. Voicu, S.A. Gârea, A. Ghebaur, C.L. Nistor, A. Sarbu, E. Vasile, R. Mitran, H. Iovu, New nanocarriers based on porous clay Heterostructures (PCH) designed for methotrexate delivery. Microporous Mesoporous Mater. 328, 111434 (2021)

    Article  CAS  Google Scholar 

  20. J. Wua, A.P. Deng, W. Jiang, R.B. Tian, Y.W. Shen, Synthesis and in vitro evaluation of pH-sensitive magnetic nanocomposites as methotrexate delivery system for targeted cancer therapy. Mater. Sci. Eng. C 71, 132–140 (2017)

    Article  Google Scholar 

  21. M. Pooresmaeil, H. Namazi, Facile coating of the methotrexate-layered double hydroxide nanohybrid via carboxymethyl starch as a pH-responsive biopolymer to improve its perform- ance for colon-specific therapy. Eur. Polym. J. 165, 111026 (2022)

    Article  CAS  Google Scholar 

  22. T.T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J.J. Zha, Z. Zhou, X.C. Zhang, C.L. Tan, R.Z. Liang, Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51(14), 6126–6176 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. M. Chakraborty, S. Dasgupta, C. Soundrapandian, J. Chakraborty, S. Ghosh, M.K. Mitra, D. Basu, Methotrexate intercalated ZnAl-layered double hydroxide. J. Solid State Chem. 184, 2439–2445 (2011)

    Article  CAS  ADS  Google Scholar 

  24. M. Chakraborty, M. Mitra, J. Chakraborty, One-pot synthesis of CaAl-layered double hydroxide–methotrexate nanohybrid for anticancer application. Bull. Mater. Sci. 40, 1203–1211 (2017)

    Article  CAS  Google Scholar 

  25. M. Chakraborty, S. Dasgupta, P. Bose, A. Misra, T.K. Mandal, M. Mitra, J. Chakraborty, D. Basu, Layered double hydroxide: inorganic organic conjugate nanocarrier for methotrexate. J. Phys. Chem. Solids 72, 779–783 (2011)

    Article  CAS  ADS  Google Scholar 

  26. X.Q. Zhang, M.G. Zeng, S.P. Li, X.D. Li, Methotrexate intercalated layered double hydroxides with different particle sizes: structural study and controlled release properties. Colloids Surf. B Biointerfaces 117, 98–106 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. S.Q. Liu, C.F. Dai, L. Wang, S.P. Li, X.D. Li, Orthogonal test design for optimization of synthesis of MTX/LDHs hybrids by ion-exchange method. J. Phys. Chem. Solids 79, 82–88 (2015)

    Article  CAS  ADS  Google Scholar 

  28. C.F. Dai, D.Y. Tian, S.P. Li, X.D. Li, Methotrexate intercalated layered double hydroxides with the mediation of surfactants: mechanism exploration and bioassay study. Mater. Sci. Eng. C 57, 272–278 (2015)

    Article  CAS  Google Scholar 

  29. J. Chakraborty, S. Roychowdhury, S. Sengupta, S. Ghosh, Mg–Al layered double hydroxide–methotrexate nanohybrid drug delivery system: evaluation of efficacy. Mater. Sci. Eng. C 33, 2168–2174 (2013)

    Article  CAS  Google Scholar 

  30. M. Pooresmaeil, H. Namazi, D-mannose functionalized MgAl-LDH/Fe-MOF nanocomposite as a new intelligent nanoplatform for MTX and DOX co-drug delivery. Int. J. Pharm. 625, 122112 (2022)

    Article  CAS  PubMed  Google Scholar 

  31. L. Yan, M.J. Zhou, X.J. Zhang, L.B. Huang, W. Chen, V.A. Roy, W.J. Zhang, X.F. Chen, A novel type of aqueous dispersible ultrathin-layered double hydroxide nanosheets for in vivo bioimaging and drug delivery. ACS Appl. Mater. Interfaces 9(39), 34185–34193 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. D.Y. Tian, Z.L. Liu, S.P. Li, X.D. Li, Facile synthesis of methotrexate intercalated layered double hydroxides: particle control, structure and bioassay explore. Mater. Sci. Eng. C 45, 297–305 (2014)

    Article  CAS  Google Scholar 

  33. Ne. Baqeri, S. Shahsavari, I.A. Dahouee, L.R. Shirmard, Design of slow-release methotrex ate drug delivery system using PHBV magnetic nanoparticles and evaluation of its cytotoxicity. J. Drug Deliv. Sci. Technol. 77, 103854 (2022)

    Article  CAS  Google Scholar 

  34. X.F. Zhao, W.Y. Wang, X.D. Li, S.P. Li, F.G. Song, Core-shell structure of Fe3O4@MTX- LDH/Au NPs for cancer therapy. Mater. Sci. Eng. C 89, 422–428 (2018)

    Article  CAS  Google Scholar 

  35. Y.F. Chen, T.T. Li, X.X. Qiu, X.Q. Shang, Eu3+-doped MgAl LDH with fuorescence as carrier for 5-fuorouracil: intercalation and release. Res. Chem. Intermed. 48, 4797–4814 (2022)

    Article  CAS  Google Scholar 

  36. Y.F. Chen, F. Li, S.H. Zhou, J.C. Wei, Y.F. Dai, Y.W. Chen, Structure and photoluminesc- ence of Mg–Al–Eu ternary hydrotalcite-like layered double hydroxides. J. Solid State Chem. 183, 2222–2226 (2010)

    Article  CAS  ADS  Google Scholar 

  37. Z.L. Liu, Q.Y. Jia, X.F. Zhao, S.P. Li, J. Shen, X.D. Li, Influences of synthesis conditions on the formation of methotrexate intercalated layered double hydroxides by exfoliation-reasse mbly route. Chem. Res. Chin. Univ. 35(5), 901–907 (2019)

    Article  CAS  Google Scholar 

  38. J.H. Choy, J.S. Jung, J.M. Oh, M. Park, J. Jeong, Y.K. Kang, O.J. Han, Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 25, 3059–3064 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. L. Latterini, M. Nocchetti, G.G. Aloisi, U. Costantino, F. Elisei, Organized chromophores in layered inorganic matrices. Inorg. Chem. Acta 360, 728–740 (2007)

    Article  CAS  Google Scholar 

  40. M. Arco, S. Gutiérrez, C. Martín, V. Rives, J. Rocha, Synthesis and characterization of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). J. Solid State Chem. 177, 3954–3962 (2004)

    Article  ADS  Google Scholar 

  41. A.I. Khan, L. Lei, A.J. Norquist, D. O’Hare, Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chem. Commun. 22, 2342–2343 (2001)

    Article  Google Scholar 

  42. H. Zhang, K. Zou, S. Guo, X. Duan, Nanostructural drug-inorganic clay composites: structure, thermal property and in vitro release of captopril-intercalated Mg–Al-layered double hydroxides. J. Solid State Chem. 179, 1792–1799 (2006)

    Article  CAS  ADS  Google Scholar 

  43. A.C. Chapman, L.E. Thirlwell, Spectra of phosphorus compounds-I the infra-red spectra of orthophosphates. Spectrochim. Acta 20, 937–947 (1964)

    Article  CAS  ADS  Google Scholar 

  44. F.M. Rubino, Separation methods for Methotrexate, its structural analogues and metabolites. J. Chromatogr. B 764, 217–254 (2001)

    Article  CAS  Google Scholar 

  45. J.H. Choy, J.S. Jung, J.M. Oh, M. Park, J.Y. Jeong, Y.K. Kang, O.J. Han, Layered double hydroxide as an effificient drugreservoir for folate derivatives. Biomaterials 25, 3059–3064 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. X.L. Huo, C.F. Dai, S.P. Li, X.D. Li, Synthesis of Au yolk/LDH shell nanoparticles as anticancer vehicles. RSC Adv. 5(12), 8689–8692 (2015)

    Article  CAS  ADS  Google Scholar 

  47. J.S. Padilha, M.F. Azevedo, J.R. Miranda-Andrades, A.D. Falco, J. Kai, R.Q. Aucelio, Use of selective quenching of a photoluminescent probe based on a Eu(III) β-diketonate complex for determination of methylmercury in produced water after liquid-liquid extraction. Talanta 244, 123406 (2022)

    Article  Google Scholar 

  48. Y.F. Chen, F. Li, G.S. Yu, X.J. Yang, Fluorescence of Zn–Al–Eu ternary layered hydroxide response to phenylalanine. Spectrochim. Acta Part A 86, 625–630 (2012)

    Article  CAS  ADS  Google Scholar 

  49. P.P. Ortega, R.A.C. Amoresi, M.D. Teodoro, E. Longo, M.A. Ponce, A.Z. Simôes, Relationship among morphology, photoluminescence emission, and photocatalytic activity of Eu-doped ceria nanostructures: a surface-type effect. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.270

    Article  Google Scholar 

  50. A. Hooda, A. Dalal, K. Nehra, P. Kumar, D. Singh, R.S. Malik, S. Kumar, Heteroleptic Eu(III) emissive complexes: luminescent, optoelectronic and theoretical investigation. J. Lumin. 252, 119272 (2022)

    Article  CAS  Google Scholar 

  51. J. Zhang, B. Ye, R.R. Wang, X.M. Tao, G.M. Cai, Mixed occupation, double valence and tunable emission of Eu in BaIn2(P2O7)2. J. Lumin. 255, 119603 (2023)

    Article  CAS  Google Scholar 

  52. F.C. Clementino, V.G. Peixoto, D.T. de Araújo, K.J. Ciuffi, E.J. Nassar, M.A. Vicente, V. Rives, E.H. de Faria, Detection of Cr(III), prometryn, and ibuprofen by hybrid Eu(III)– dipicolinate kaolinite luminescent sensor. Appl. Clay Sci. 227, 106591 (2022)

    Article  CAS  Google Scholar 

  53. M.E. Pacheco, Ch. Chimeno-Trinchet, A. Fernández-González, R. Badía-Laíño, New europium-doped carbon nanoparticles showing long-lifetime photoluminescence: synthesis, characterization and application to the determination of tetracycline in waters. Spectrochim. Acta Part A Mol. Biomol. Spectr. 284, 121756 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (51864033, 21978127), the National Key Research Development Program of China (2019YFC0605000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, X., Li, T., Liu, Y. et al. Fluorescent drug delivery system used for methotrexate and its inhibition against HepG2 cells. J IRAN CHEM SOC 21, 117–127 (2024). https://doi.org/10.1007/s13738-023-02910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02910-x

Keywords

Navigation