Skip to main content
Log in

Direct incorporation of metal ion into β-substituted porphyrinogen skelton

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Similar to porphyrin, porphyrinogen is regarded as a stable platform with adaptable properties. Herein we demonstrate the synthesis of metal complexes by direct incorporation of transition metals having importance on the redox activity of the ligands. Metal ions were directly incorporated by using anhydrous metal salts like CoII and CrIII in porphyrinogen core. Tetra-anion is generated by the reaction of n-BuLi and then followed by metal complex formation. Its oxidation unlike the aromatization of the porphyrin skeleton gives rise to various forms of oxidized porphyrinogen. The above aspects are particularly important for establishing metal-assisted redox chemistry of porphyrinogen ligand. The β-position of the pyrrole ring in porphyrinogens was suitably substituted by halogens and other functionalities (β-substituted porphyrinogen) which were found to be effective receptors for a wide variety of guest molecules under certain conditions. The invention, which falls under the technical heading of “organic compound synthesis,” details a novel porphyrin family chemical as well as its preparation and application, involving several steps in the preparation process. Cycloheptanone and pyrroles are initially combined in an acetone environment to create meso-cycloheptyl porphyrinogen, which is subsequently followed by metal porphyrinogens and β-substituted porphyrinogen. By using FT-IR, 1H-NMR, mass, and UV–Vis spectroscopy, the characterization was completed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. W.H. Brown, W.N. French, Synthesis of porphyrinogen-like compounds (mixed quaterenes). Can. J. Org. Chem. 36, 371–377 (1958)

    Article  CAS  Google Scholar 

  2. M. Sruti, P. Tanmoy, S. Kasturi, Large-scale Green synthesis of porphyrins. ACS Omega 6(35), 22922–22936 (2021)

    Article  Google Scholar 

  3. F. Kuttassery, S. Mathew, S.N. Remello, A. Thomas, K. Sano, Y. Ohsaki, Y. Nabetani, H. Tachibana, H. Inoue, An alternative route to bypass the bottle-neck of water oxidation: Two-electron oxidation of water catalyzed by earth-abundant Metalloporphyrins. Coord. Chem. Rev.. Chem. Rev. 377, 64–72 (2018)

    Article  CAS  Google Scholar 

  4. A. Dhamija, P. Mondal, B. Saha, S.P. Rath, Induction, control, and rationalization of supramolecular chirogenesis using metalloporphyrin tweezers: A structure-function correlation. Dalton Trans. 49, 10679–10700 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. K. Yamasumi, Y. Notsuka, Y. Yamaoka, S. Mori, M. Ishida, H. Furuta, Synthesis of helically π-extended N-confused porphyrin dimer via meso-Bipyrrole-Bridge with near-infrared-II absorption capability. Chem. Eur. J. 26, 13590–13594 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. E.C. Lee, Y.K. Park, J.H. Kim, H. Hwang, Y.L. Kim, C.H. Lee, Synthesis of 1, 3-disubstituted naphthalenes from the Baylis-Hillman acetates with the aid of manganese (III) acetate. Tetrahedron Lett. 43, 9493–9495 (2002)

    Article  CAS  Google Scholar 

  7. H. Ying, J.S. Juan, L.W. Gen, G.Y. Chao, Synthesis, crystal structure and complexing properties of calix [4] pyrrole 10α, 20α-disubstituted Schiff bases and urea derivatives. J. Mol. Struc. 1083, 300–310 (2015)

    Article  ADS  Google Scholar 

  8. S. Jennifer, S. Gambarotta, Labile tetranuclear Fe(II) and Co(II) clusters of a dipyrrolide dianion with two diamagnetic ferrous. Links. Organometalics 22(11), 2325–2330 (2003)

    Article  Google Scholar 

  9. M. Rostami, L. Rafiee, Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photo-dynamic therapy. RPS 10, 504–513 (2015)

    PubMed  PubMed Central  Google Scholar 

  10. G.D. Daniel, A.P. Leila, Synthesis and functionalization of challenging mesoSubstituted Aryl Bis-pocket porphyrins accessed via Suzuki−Miyaura cross-coupling. J. Org. Chem. 87, 11783–11795 (2022)

    Article  Google Scholar 

  11. M.A.P. Sara, A.H. Cesar, Synthesis of meso-substituted porphyrins using sustainable chemicalprocesses. J. Por. Phthalocy. 20, 45–60 (2016)

    Article  Google Scholar 

  12. N.H. Joost, B.D.B. Reek, P. Sonja, J. Tiddo, A. Mooibroek, M. Kluwer, C. Xavier, Transition metal catalysis controlled by hydrogen bonding in the second coordination sphere. Chem. Rev. 122(14), 12308–12369 (2022)

    Article  Google Scholar 

  13. Z. Dexia, Z. Boxu, B. Yimin, M. Somnath, L. Jing, B. Hongtao, F. Yu, Exploring the structure and complexation dynamics of Azide anion recognition by calix[4]pyrroles in solution. J. Phys. Chem. Lett. 13(2), 669–675 (2022)

    Article  Google Scholar 

  14. O. Naoki, Y. Shinya, I. Hiroki, I. Takuya, I. Shingo, S. Rafael, H. Yuh, I. Stephan, Y. Eiji, Encapsulation of aromatic guests in the bisporphyrin cavity of a double-stranded spiroborate helicate: Thermodynamic and kinetic studies and the encapsulation mechanism. J. Org. Chem. 86(15), 10501–10516 (2021)

    Article  Google Scholar 

  15. W. Teng, L. Jingjing, C. Xiaoqun, Revealing the dynamic process of ion pair recognition by calix [4]pyrrole: A case study of cesium chloride. J. Phys. Chem. Lett. 12, 3253–3259 (2021)

    Article  Google Scholar 

  16. A.J. Plajer, J. Zhu, P. Pröhm, F.J. Rizzuto, U.F. Keyser, D.S. Wright, Conformational control in main group phosphazane anion receptors and transporters. J. Am. Chem. Soc. 142, 1029–1037 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. S.K. Kim, D.E. Gross, D.G. Cho, V.M. Lynch, J.L. Sessler, N-Tosylpyrrolidine calix[4]pyrrole: Synthesis and ion binding studies. J. Org. Chem. 76, 1005–1012 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. S.K. Kim, V.M. Lynch, N.J. Young, B.P. Hay, C.H. Lee, J.S. Kim, B.A. Moyer, J.L. Sessler, Cesium halide ion pair recognition by a pyrrole strapped Calix[4]pyrrole. Supramol. Chem.. Chem. 31, 203–210 (2019)

    Article  Google Scholar 

  19. G. Cafeo, G. Carbotti, G. Cuzzola, M. Fabbi, S. Ferrini, F.H. Kohnke, G. Papanikolaou, M. Plutino, C. Rosano, A. White, Drug delivery with a Calixpyrrole–trans-Pt(II) complex. J. Am. Chem. Soc. 135, 2544–2551 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. H. Qing, Z. Zhan, J.L. Sessler, Hemispherand-strapped calix[4]pyrrole: An ion-pair receptor for the recognition and extraction of lithium nitrite. J. Am. Chem. Soc. 138, 9779–9782 (2016)

    Article  Google Scholar 

  21. S.K. Kim, J.L. Sessler, D.E. Gross, C.H. Lee, J.S. Kim, A calix[4]arene strapped calix[4]pyrrole: An ion-pair receptor displaying three different cesium cation recognition modes. J. Am. Chem. Soc. 132(16), 5827–5836 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. I.A. Rather, S.A. Wagay, M.S. Hasnain, R. Ali, New dimensions in calix[4]pyrrole: the land of opportunity in supramolecular chemistry. RSC Adv. 9, 38309–38344 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Gianpiero, B. Margherita, Ion-pair selective conformational rearrangement of sulfonamide calix[6]arene-based pseudorotaxanes. Org. Lett. 22, 3702–3705 (2020)

    Article  Google Scholar 

  24. M. Bazzoni, L. Andreoni, S. Silvi, A. Credi, G. Cera, A. Secchi, Selective access to constitutionally identical, orientationally isomeric calix[6]arene-based [3]rotaxanes by an active template approach. Chem. Sci. 12, 6419–6428 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. F. Angela, N. de Danil, A.H. Nawal, A.H. Weam, S. Rachida, K. Samira, V. Liliana, Calix[4]pyrrole for the removal of arsenic (III) and arsenic (V) from water. J. Hazard. Mater. 8, 1–34 (2016)

    Google Scholar 

  26. B. Sambasivaiah, R. Kumari, S. Dey, Synthesis of β-octabromo meso-tetracycloheptyl porphyrinogen and its application in arsenic removal. J. Appl. Chem. 6, 1031–1039 (2017)

    CAS  Google Scholar 

  27. S. Dey, K. Pal, S. Sarkar, Synthesis of β-octabromocalix[4]pyrroles and conformational diversity in their acetone inclusion complexes. Tetrahedron Lett. 49, 960–964 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Central University of Jharkhand for its research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Dey.

Ethics declarations

Conflict of interest

The authors declare no conflict issues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samba Sivaiah, B., Kumari, R. & Dey, S. Direct incorporation of metal ion into β-substituted porphyrinogen skelton. J IRAN CHEM SOC 21, 87–100 (2024). https://doi.org/10.1007/s13738-023-02908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02908-5

Keywords

Navigation