Skip to main content
Log in

An android smartphone-based digital image colorimeter for detecting acid fuchsine dye in aqueous solutions

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

An android smartphone-based Digital Image Colorimeter (DIC) was proposed as a simple, fast, portable, an environmentally friendly, and accurate analytical procedure for quantitative detection of acid fuchsine dye in aqueous solutions. In this study, light-boxes photography was recommended for the quantitative assessment and constructed utilizing built-in-house analytical device supported by smartphone. An application called Color Grab App was developed for the Android smartphone that uses an image-matching algorithm to assess the AFD solutions. The color values such as red (R), green (G), and blue (B) parameters can be measured via the app and utilized for determining the examined AFD solutions. The influence of main factors, such as light-boxes component, distance of sample cell holder, lighting types, position, angle, and power were studied in detail to obtain the correct color of the AFD solution and optimum conditions for recording the real RGB value. Under optimal conditions, the obtained calibration curves were linear over the ranges 3–9, 3–100, and 3–20 µg mL−1 of AFD with a good correlation coefficient (R2 > 0.99) due to using G, B, and the sum of GB channels, respectively. The obtained signal via a G channel presented greater sensitivity and linearity, therefore preferred to be the best working channel for the AFD assessment. The accuracy and precision of the proposed method were also in acceptable range. UV–Vis spectrophotometry was also utilized as reference method. The proposed method was successfully applied for the evaluation of the dye decolorization levels via Pseudomonas Aeruginosa BCH bacterium strain. It has been observed that the recorded results by the proposed methods are in a good agreement with those recorded by the reference method. The proposed method also provides budgetary advantages due to the use of low-cost and easy-handled device.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Elimelech, The global challenge for adequate and safe water. J. Water Supply Res. Technol. 55(1), 3 (2006)

    Article  Google Scholar 

  2. J. Fawell, M.J. Nieuwenhuijsen, Contaminants in drinking water environmental pollution and health. Br. Med. Bull. 68(1), 199 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. H.S. Khalid, H.S. Ali, D.A. Almashhadany, Metalliferous content of drinking water and sediments in storage tanks of some schools in Erbil city, Iraq. Ital. J. Food Saf. 9(3) (2020).

  4. A.F. Al Yaqout, Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate. Waste Manage (Oxford) 23(9), 817 (2003)

    Article  CAS  Google Scholar 

  5. S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques. Appl. Water Sci. 7(3), 1043 (2017)

    Article  CAS  Google Scholar 

  6. ChEBI. CHEBI:87052 - Acid Fuchsin Dye, Cambridgeshire, UK (2015). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:87052#:~:text=Acid%20fuchsin%20has%20wide%20use,to%20distinguish%20muscle%20from%20collagen., Accessed from 10 Aug 2022

  7. G. Marolt, M. Kolar, Analytical methods for determination of phytic acid and other inositol phosphates: a review. Molecules 26(1), 174 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  8. A. Khanmohammadi, A. Jalili Ghazizadeh, P. Hashemi, A. Afkhami, F. Arduini, H. Bagheri, An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. J. Iran. Chem. Soc. 17(10), 2429 (2020)

    Article  CAS  Google Scholar 

  9. L.-P. Chen, Y. Jiao, Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Sci. Eng. 16(2), 193 (2023)

    Google Scholar 

  10. A.A. Renita, D.J. Amarnath, S.L. Duraikannu, Synthesis of peanut-shell magnetized biocarbon for acid fuchsin dye removal. Mater. Today: Proc. 43, 3075 (2021)

    Google Scholar 

  11. N.S. Ahmedzeki, A. Kamil, Statistical analysis of the removal of acid fuchsin dye using zeolite 5A. Iraqi J. Chem. Pet. Eng. 18(2), 41 (2017)

    Article  Google Scholar 

  12. D. Monal, J.K. Basu, Statistical optimization for the adsorption of acid fuchsin onto the surface of carbon alumina composite pellet: an application of response surface methodology. J. Environ. Sci. Technol. 5(1), 42 (2012)

    Google Scholar 

  13. N. Gong, Y. Liu, R. Huang, Simultaneous adsorption of Cu2+ and Acid fuchsin (AF) from aqueous solutions by CMC/bentonite composite. Int. J. Biol. Macromol. 115, 580 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. E. Kalkan, H. Nadaroglu, N. Celebi, H. Celik, E. Tasgin, "Experimental Study to Remediate Acid Fuchsin Dye Using Laccase-Modified Zeolite from Aqueous Solutions,"Pol. J. Environ. Stud., 24, 1, (2015).

  15. E. Kalkan, H. Nadaroglu, Adsorptive removal of Acid Fuchsin dye using by-product silica fume and laccase-modified silica fume. Iran. J. Chem. Chem. Eng. 40(2), 551 (2021)

    CAS  Google Scholar 

  16. J. Yu, J. Zou, P. Xu, Q. He, Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. J. Clean. Prod. 251, 119744 (2020)

    Article  CAS  Google Scholar 

  17. R. Zhou, R. Zhou, X. Zhang, K. Bazaka, K.K. Ostrikov, Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption. Front. Chem. Sci. Eng. 13, 340 (2019)

    Article  CAS  Google Scholar 

  18. Y. Sheng, L. Zhen, X. Wang, N. Li, Q. Tong, Degradation of acid fuchsine by a modified electro-Fenton system with magnetic stirring as oxygen supplying. J. Environ. Sci. 22(4), 547 (2010)

    Article  CAS  Google Scholar 

  19. S.B. Jadhav, S.M. Yedurkar, S.S. Phugare, J.P. Jadhav, Biodegradation studies on acid violet 19, a triphenylmethane dye, by Pseudomonas aeruginosa BCH. Clean–Soil Air Water 40(5), 551 (2012)

    Article  CAS  Google Scholar 

  20. L. Ayed, K. Chaieb, A. Cheref, A. Bakhrouf, Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination 260(1–3), 137–146 (2010)

    Article  CAS  Google Scholar 

  21. Y. Fan, J. Li, Y. Guo, L. Xie, G. Zhang, Digital image colorimetry on smartphone for chemical analysis: a review. Measurement 171, 108829 (2021)

    Article  Google Scholar 

  22. S. Damirchi, T. Heidari, Evaluation of digital camera as a portable colorimetric sensor for low-cost determination of inorganic arsenic (III) in industrial wastewaters by chemical hydride generation assisted-Fe (III)− 1, 10-phenanthroline as a green color agent. J Iran. Chem. Soc. 15, 2549 (2018)

    Article  CAS  Google Scholar 

  23. M. Kompany-Zareh, M. Mansourian, F. Ravaee, Simple method for colorimetric spot-test quantitative analysis of Fe (III) using a computer controlled hand-scanner. Anal. Chim. Acta 471(1), 97 (2002)

    Article  CAS  Google Scholar 

  24. K. Leon, D. Mery, F. Pedreschi, J. Leon, Color measurement in L∗ a∗ b∗ units from RGB digital images. Food Res. Int. 39(10), 1084 (2006)

    Article  Google Scholar 

  25. L. Byrne, J. Barker, G. Pennarun-Thomas, D. Diamond, S. Edwards, Digital imaging as a detector for generic analytical measurements. TrAC 19(8), 517 (2000)

    CAS  Google Scholar 

  26. Y. Suzuki, M. Endo, J. Jin, K. Iwase, M. Iwatsuki, Tristimulus colorimetry using a digital still camera and its application to determination of iron and residual chlorine in water samples. Anal. Sci. 22(3), 410 (2006)

    Article  Google Scholar 

  27. N. Bang-iam, Y. Udnan, P. Masawat, Design and fabrication of artificial neural network-digital image-based colorimeter for protein assay in natural rubber latex and medical latex gloves. Microchem. J. 106, 270 (2013)

    Article  CAS  Google Scholar 

  28. E. Nobrega Gaiao, V.L. Martins, W. da Silva Lyra, L.F. de Almeida, E.C. da Silva, M.C.U. Araújo, Digital image-based titrations. Anal. Chim. Acta 570(2), 283 (2006)

    Article  Google Scholar 

  29. M.B. Lima, S.I.E. Andrade, I.S. Barreto, L.F. Almeida, M.C.U. Araújo, A digital image-based micro-flow-batch analyzer. Microchem. J. 106, 238 (2013)

    Article  CAS  Google Scholar 

  30. A.R. Tôrres, W. da Silva Lyra, S.I.E. de Andrade, R.A.N. Andrade, E.C. da Silva, M.C.U. Araújo, E. da Nóbrega Gaião, A digital image-based method for determining of total acidity in red wines using acid–base titration without indicator. Talanta 84(3), 601 (2011)

    Article  PubMed  Google Scholar 

  31. A. García, M. Erenas, E.D. Marinetto, C.A. Abad, I. de Orbe-Paya, A.J. Palma, L.F. Capitán-Vallvey, Mobile phone platform as portable chemical analyzer. Sens. Actuators B Chem. 156(1), 350 (2011)

    Article  Google Scholar 

  32. N. López-Ruiz, A. Martínez-Olmos, I.P. de Vargas-Sansalvador, M. Fernández-Ramos, M. Carvajal, L. Capitan-Vallvey, A. Palma, Determination of O2 using colour sensing from image processing with mobile devices. Sens. Actuators B Chem. 171, 938 (2012)

    Article  Google Scholar 

  33. V. Springer, F. Avila, M. Avena, A simple strategy for methylene blue determination in human and veterinary dosage forms by digital imaging. J. Anal. Chem. 75(7), 958 (2020)

    Article  Google Scholar 

  34. M.S. Woolf, L.M. Dignan, A.T. Scott, J.P. Landers, Digital postprocessing and image segmentation for objective analysis of colorimetric reactions. Nat. Protoc. 16(1), 218 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. P. Masawat, A. Harfield, A. Namwong, An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chem. 184, 23 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. J. Chanla, M. Kanna, J. Jakmunee, S. Somnam, Application of smartphone as a digital image colorimetric detection for batch and flow-based acid-base titration. Chiang Mai J. Sci. 46(5), 975 (2019)

    CAS  Google Scholar 

  37. Y. Thipwimonmas, A. Thiangchanya, A. Phonchai, S. Thainchaiwattana, W. Jomsati, S. Jomsati, K. Tayayuth, W. Limbut, The development of digital image colorimetric quantitative analysis of multi-explosives using polymer gel sensors. Sensors 21, 23 (2021)

    Article  Google Scholar 

  38. Alexis. 10 Best Color Identifier Apps for Android/iPhones (iOS) in 2023 (2023). https://oscarmini.com/best-color-identifier-apps/, Accessed from 20 Apr 2023

  39. A. Negi. 10 best color identifier apps for Android and iPhone 2023 (2022). https://tipsroid.com/color-identifier-apps/, Accessed from 25 May 2023

  40. B. Stephenson. The 8 best colors apps of 2023 (2023). https://www.lifewire.com/the-10-best-colors-apps-of-2018-4178722, Accessed from 25 April 2023

  41. V. Arunachalam, D.C. Salgaonkar, N.V. Kevat, B.V. Walawalkar, B. Das, Quantification of betacyanin content variation of amaranth varieties by an Android App, colorimeter, and infrared spectroscopy. Chin. J. Anal. Chem. 50(10), 100145 (2022)

    Article  Google Scholar 

  42. M. Moslemzadeh, A. Larki, K. Ghanemi, A combination of dispersive liquid–liquid microextraction and smartphone-based colorimetric system for the phenol measurement. Microchem. J. 159, 105583 (2020)

    Article  CAS  Google Scholar 

  43. R.F. Abbas, A.A. Waheb, H.K. Hami, N.I. Mahdi, Smartphone digital image using for determination of DCH by a diazotization reaction. Curr. Anal. Chem. 16(8), 988 (2020)

    Article  CAS  Google Scholar 

  44. M. Fan, Z. Pan, C. Wang, Y. Guo, J. Sun, M. Liu, B. Peng, J. Wu, Y. Fang, Quantitative visual detection of mercury ions with ratiometric fluorescent test paper sensor. Front. Chem. 10, 859379 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Peng, J. Zhou, J. Xu, M. Fan, Y. Ma, M. Zhou, T. Li, S. Zhao, A smartphone-based colorimetry after dispersive liquid–liquid microextraction for rapid quantification of calcium in water and food samples. Microchem. J. 149, 104072 (2019)

    Article  CAS  Google Scholar 

  46. B. Jain, R. Jain, R.R. Jha, A. Bajaj, S. Sharma, A green analytical approach based on smartphone digital image colorimetry for aspirin and salicylic acid analysis. Green Anal. Chem. 3, 100033 (2022)

    Article  Google Scholar 

  47. M. Saadati, Smartphone-based digital image analysis for determination of some food dyes in commercial products. Food Anal. Methods 14(11), 2367 (2021)

    Article  Google Scholar 

  48. A. Hossain, J. Canning, S. Ast, P.J. Rutledge, T.L. Yen, A. Jamalipour, Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water. IEEE Sens. J. 15(9), 5095 (2014)

    Article  Google Scholar 

  49. C.G. Ravazzi, M.D.O.K. Franco, M.C.R. Vieira, W.T. Suarez, Smartphone application for captopril determination in dosage forms and synthetic urine employing digital imaging. Talanta 189, 339 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. B. Hemmateenejad, S.F. Farzam, N. Mobaraki, Simultaneous measurement of leucine and isoleucine by multivariate image analysis-thin layer chromatography (MIA-TLC). J Iran. Chem. Soc. 11, 1609 (2014)

    Article  CAS  Google Scholar 

  51. L.P. dos Santos Benedetti, V.B. dos Santos, T.A. Silva, E. Benedetti Filho, V.L. Martins, O. Fatibello-Filho, A digital image-based method employing a spot-test for quantification of ethanol in drinks. Anal. Methods 7(10), 4138 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge anyone who encouraged and supported us.

Funding

There is no any of the funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hawraz Sami Khalid.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, H.S., Fakhre, N.A. An android smartphone-based digital image colorimeter for detecting acid fuchsine dye in aqueous solutions. J IRAN CHEM SOC 20, 3043–3057 (2023). https://doi.org/10.1007/s13738-023-02896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02896-6

Keywords

Navigation