Skip to main content
Log in

Three-dimensional self-assembled reduced graphene oxide composite as a promising adsorbent for the collection of palladium (II) and platinum (IV) in a low concentration

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A three-dimensional reduced graphene oxide aerogel modified by sulfamic acid and ethylenediamine was prepared via one-step reduction self-assembly under atmospheric pressure within 90 °C heating constantly. The adsorption efficiency of palladium (II) was ~ 97.0% at pH 11 within 50 min by the prepared composite. While the composite exhibited adsorption for platinum (IV) at acid condition, giving a rising to an adsorption efficiency was 61.7% at pH 5. Only 25.8% adsorption efficiency of platinum (IV) was found at pH 11, and 17.0% adsorption efficiency of palladium (II) was obtained at pH 5. The adsorption capacity of the composite for palladium (II) was 80 μg mg−1 above, and the adsorption capacity of the composite for platinum (IV) was ~ 160 μg mg−1. The obtained palladium (II) and platinum (IV) can be eluted by urea and surfactant from the surface of the composite, respectively. Understanding the mechanism of the adsorption/desorption between palladium (II)/platinum (IV) and the composite, explored a promising way for recycling and enrichment of noble metal at a low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

GO:

Graphene oxide

Pd:

Palladium

EDA:

Ethylenediamine

CTAB:

Hexadecyl trimethyl ammonium bromide

3D:

Three-dimensional

Pt:

Platinum

rGO:

Reduced graphene oxide

AAS:

Atomic absorption spectrometer

B–R:

Britton–Robinson

SEM:

Scanning electron microscope

XPS:

X-ray photoelectron spectroscopy

FT-IR:

Fourier transform infrared

References

  1. J. Wang, W. Xu, H. Liu, F. Yu, H. Wang, Extractant structures and their performance for palladium extraction and separation from chloride media: a review. Miner. Eng. 163, 106798–106812 (2021)

    Article  CAS  Google Scholar 

  2. S. Feng, K. Huang, Z. Huang, G. Liu, G. Zhang, G. Gou, Highly selective extraction of Pd (II) using functionalized molecule of 2-[(2-ethylhexyl) thio] benzoxazole and its Pd (II) extraction mechanism. J. Mol. Struct. 1230, 129639–129652 (2021)

    Article  CAS  Google Scholar 

  3. M. Shao, S. Li, C. Jin, M. Chen, Z. Huang, Recovery of Pd (II) from hydrochloric acid medium by solvent extraction–direct electrodeposition using hydrophilic/hydrophobic ILs. ACS Omega 5(42), 27188–27196 (2020). https://doi.org/10.1021/acsomega.0c03255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. Zhang, L. Zhang, Q. Wang, J. Guo, H. Wei, Y. Yang, Extraction and separation of Pd (II)/Pt (IV) by neutral sulfur-containing extractant from hydrochloric acid medium. New J. Chem. 45, 19467–19475 (2021)

    Article  CAS  Google Scholar 

  5. H.T. Truong, M.S. Lee, Separation of Pd (II) and Pt (IV) from hydrochloric acid solutions by solvent extraction with Cyanex 301 and LIX 63. Miner. Eng. 115, 13–20 (2018)

    Article  CAS  Google Scholar 

  6. L. Chen, Z. Huang, J. Chen, Solvent extraction and stripping of Pd (II) cyanide in cetyltrimethylammonium bromide system. Asian J. Chem. 25(18), 10169–10171 (2013). https://doi.org/10.14233/ajchem.2013.15213

    Article  CAS  Google Scholar 

  7. S.P. Feng, K. Huang, Enhanced separation of Pd (II) and Pt (IV) from hydrochloric acid aqueous solution using 2-((2-methoxyethyl) thio)-1H-benzimidazole. Rare Met. 39, 1473–1482 (2020). https://doi.org/10.1007/s12598-020-01545-8

    Article  CAS  Google Scholar 

  8. M. Chen, S. Wang, Z. Huang, J. Chen, M.J. Chen, Separation and recovery of Pd (II) and Pt (II) from cyanide liquors of Pd–Pt flotation concentrate via solvent extraction. Chem. Technol. Biotechnol. 92(7), 1699–1709 (2017). https://doi.org/10.1002/jctb.5168

    Article  CAS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  10. H. Zhang, D. Yang, A. Lau, T. Ma, H. Lin, B. Jia, Hybridized graphene for supercapacitors: beyond the limitation of pure graphene. Small 17(12), 2007311–2007322 (2021). https://doi.org/10.1002/smll.202007311

    Article  CAS  Google Scholar 

  11. B.T. Ho, T. Lim, M.H. Jeong, J.W. Suk, Graphene fibers containing activated graphene for high-performance solid-state flexible supercapacitors. ACS Appl. Energy Mater. 4(9), 8883–8890 (2021). https://doi.org/10.1021/acsaem.1c01095

    Article  CAS  Google Scholar 

  12. M. Ali, R. Riaz, A.S. Anjum, K.C. Sun, H. Li, S.H. Jeong, M.J. Ko, Graphene quantum dots induced porous orientation of holey graphene nanosheets for improved electrocatalytic activity. Carbon 171, 493–506 (2021)

    Article  CAS  Google Scholar 

  13. O. Braun, J. Overbeck, M.E. Abbassi, S. Käser, R. Furrer, A. Olziersky, A. Flasby, G.B. Barin, Q. Sun, R. Darawish, K. Müllen, P. Ruffieux, R. Fasel, I. Shorubalko, M.L. Perrin, M. Calame, Optimized graphene electrodes for contacting graphene nanoribbons. Carbon 184, 331–339 (2021)

    Article  CAS  Google Scholar 

  14. N. Liu, A. Chortos, T. Lei, L. Jin, T.R. Kim, W. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair, Z. Bao, Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3(9), 1–10 (2017). https://doi.org/10.1126/sciadv.1700159

    Article  CAS  Google Scholar 

  15. D. Ji, S. Low, S. Zhang, L. Liu, Y. Lu, Q. Liu, Smartphone-based electrochemical system for biosensors and biodetection. Methods Mol. Biol. 2393, 493–514 (2021). https://doi.org/10.1007/978-1-0716-1803-5_26

    Article  CAS  Google Scholar 

  16. G. Yildiz, M. Bolton-Warberg, F. Awaja, Graphene and graphene oxide for bio-sensing: general properties and the effects of graphene ripples. Acta Biomater. 131, 62–79 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. J. Li, H. Zhang, L. Liu, F. Meng, Y. Cui, F. Wang, Modification of graphene and graphene oxide and their applications in anticorrosive coatings. Coat. Technol. Res. 18, 311–331 (2021)

    Article  CAS  Google Scholar 

  18. S.S.A. Kumar, S. Bashir, K. Ramesh, S. Ramesh, New perspectives on graphene/graphene oxide-based polymer nanocomposites for corrosion applications: the relevance of the graphene/polymer barrier coatings. Prog. Org. Coat. 154, 106215–106302 (2021)

    Article  CAS  Google Scholar 

  19. R. Ishikawa, S. Yamazaki, S. Watanabe, N. Tsuboi, Layer dependency of graphene layers in perovskite/graphene solar cells. Carbon 172, 597–601 (2021)

    Article  CAS  Google Scholar 

  20. K.P. Loh, S.W. Tong, J. Wu, Graphene and graphene-like molecules: prospects in solar cells. J. Am. Chem. Soc. 138(4), 1095–1102 (2016). https://doi.org/10.1021/jacs.5b10917

    Article  CAS  PubMed  Google Scholar 

  21. T. Mahmoudi, Y. Wang, Y. Hahn, Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018)

    Article  CAS  Google Scholar 

  22. Y. Sun, Y. Zheng, H. Pan, J. Chen, W. Zhang, L. Fu, K. Zhang, N. Tang, Y. Du, Magnetism of graphene quantum dots. NPJ Quant. Mater. 2, 5 (2017)

    Article  Google Scholar 

  23. S. Ahirwar, S. Mallick, D. Bahadur, Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega 2(11), 8343–8353 (2017). https://doi.org/10.1021/acsomega.7b01539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. Chen, X. Hai, J. Wang, Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal. Chim. Acta 922, 1–10 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. L. Chen, Z.R. Xu, A three-dimensional nickel-doped reduced graphene oxide composite for selective separation of hemoglobin with a high adsorption capacity. RSC Adv. 6(61), 56278–56286 (2016)

    Article  CAS  Google Scholar 

  26. Y. Zhang, J.W. Liu, X.W. Chen, J.H. Wang, A three-dimensional amylopectin-reduced graphene oxide framework for efficient adsorption and removal of hemoglobin. J. Mater. Chem. B 3(6), 983–989 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. J.W. Liu, Y. Zhang, X.W. Chen, J.H. Wang, Graphene oxide-rare earth metal-organic framework composites for the selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 6(13), 10196–10204 (2014). https://doi.org/10.1021/am503298v

    Article  CAS  PubMed  Google Scholar 

  28. L. Chen, D.H. Zheng, Y. Zhang, Y. Wang, Z.R. Xu, In situ self-assembled reduced graphene oxide aerogel embedded with nickel oxide nanoparticles for the high-efficiency separation of ovalbumin. J. Sep. Sci. 40, 1765–1772 (2017). https://doi.org/10.1002/jssc.201601322

    Article  CAS  PubMed  Google Scholar 

  29. L. Chen, L. Wang, D. Song, Z. Xu, Reduced graphene oxide aerogel with packaged TiO2 nanoparticles as a promising adsorbent for the separation of DNA from human whole blood. Sep. Sci. Plus 1(3), 217–224 (2018). https://doi.org/10.1002/sscp.201700044

    Article  CAS  Google Scholar 

  30. B. Liu, P.J. Huang, E.Y. Kelly, J. Liu, Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Biotechnol. J 11(6), 780–787 (2016). https://doi.org/10.1002/biot.201500540

    Article  CAS  PubMed  Google Scholar 

  31. C. Lu, Y. Liu, Y. Ying, J. Liu, Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir 33(2), 630–637 (2017). https://doi.org/10.1021/acs.langmuir.6b04502

    Article  CAS  PubMed  Google Scholar 

  32. M. Wu, R. Kempaiah, P.J. Huang, V. Maheshwari, J. Liu, Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6), 2731–2738 (2011). https://doi.org/10.1021/la1037926

    Article  CAS  PubMed  Google Scholar 

  33. B. Liu, S. Salgado, V. Maheshwari, J. Liu, DNA adsorbed on graphene and graphene oxide: fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 26, 41–49 (2016)

    Article  CAS  Google Scholar 

  34. G.X. Zhao, J.X. Li, X.M. Ren, C.L. Chen, X.K. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45(24), 10454–10462 (2011). https://doi.org/10.1021/es203439v

    Article  CAS  PubMed  Google Scholar 

  35. G.X. Zhao, X.M. Ren, X. Gao, X.L. Tan, J.X. Li, C.L. Chen, Y.Y. Huang, X.K. Wang, Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40(41), 10945–10952 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 42(16), 5682–5689 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  CAS  Google Scholar 

  38. W. Chen, S. Li, C. Chen, L. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23(47), 5679–5683 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. H. Bai, C. Li, X. Wang, G. Shi, A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. (Camb.) 46(14), 2376–2378 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. G. Tang, Z.G. Jiang, X. Li, H.B. Zhang, A. Dasari, Z.Z. Yu, Three-dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014)

    Article  CAS  Google Scholar 

  41. X. Jiang, Y. Ma, J. Li, Q. Fan, W. Huang, Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J. Phys. Chem. C 114(51), 22462–22465 (2010). https://doi.org/10.1021/jp108081g

    Article  CAS  Google Scholar 

  42. L. Zhang, T. Wang, H. Wang, Y. Meng, W. Yu, L. Chai, Graphene@poly (m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chem. Commun. (Camb.) 49(85), 9974–9976 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. H. Hu, Z. Zhao, W. Wan, Ultralight and highly compressible graphene aerogels. Adv. Mater. 25(15), 2219–2223 (2013). https://doi.org/10.1002/adma.201204530

    Article  CAS  PubMed  Google Scholar 

  44. J. Li, J. Li, H. Meng, S. Xie, B. Zhang, L. Li, H. Ma, J. Zhang, M. Yu, Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A 2(9), 2934 (2014)

    Article  CAS  Google Scholar 

  45. J. Liang, Z. Cai, L. Li, L. Guo, J. Geng, Scalable and facile preparation of graphene aerogel for air purification. RSC Adv. 4(10), 4843–4847 (2014)

    Article  CAS  Google Scholar 

  46. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  CAS  Google Scholar 

  47. Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 20(4), 743–748 (2010)

    Article  CAS  Google Scholar 

  48. S.A. Zaidi, F. Shahzad, S. Batool, Progress in cancer biomarkers monitoring strategies using graphene modified support materials. Talanta 210, 120669 (2020)

    Article  CAS  PubMed  Google Scholar 

  49. N. Nekrasov, D. Kireev, A. Emelianov, I. Bobrinetskiy, Graphene-based sensing platform for on-chip ochratoxin a detection. Toxins (Basel) 11, 10 (2019)

    Article  Google Scholar 

  50. P.J. Huang, J. Liu, Signaling kinetics of DNA and aptamer biosensors revealing graphene oxide surface heterogeneity. J. Anal. Test. 6, 20–27 (2022)

    Article  Google Scholar 

  51. M. Zandieh, K. Patel, J. Liu, Adsorption of linear and spherical DNA oligonucleotides onto microplastics. Langmuir 38, 1915–1922 (2022). https://doi.org/10.1021/acs.langmuir.1c03190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Fundamental Research Funds of Yunnan Province for Youth (Nos. 202001AU070134 and 202001AU070112).

Funding

This work was financially supported by the Fundamental Research Funds of Yunnan Province for Youth (No. 202001AU070134 and No. 202001AU070112).

Author information

Authors and Affiliations

Authors

Contributions

LC contributed to design the experiment, writing—original draft, and writing—review and editing; TY and QS contributed to writing—review and editing; YL and RL contributed to experiment and data collection.

Corresponding authors

Correspondence to Lei Chen or Qi-Jiang Shu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, YL., Li, RX. et al. Three-dimensional self-assembled reduced graphene oxide composite as a promising adsorbent for the collection of palladium (II) and platinum (IV) in a low concentration. J IRAN CHEM SOC 20, 2861–2870 (2023). https://doi.org/10.1007/s13738-023-02882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02882-y

Keywords

Navigation