Skip to main content
Log in

A 3-position modified naphthalimide fluorescent probe for reversible response to H2O2 and GSH and cell imaging

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

An “off–on–off” fluorescent probe NapEb for high selectivity and reversible response to H2O2 and GSH was synthesized. Inspired by the role of GSH in the human body, the –Se–N– bond in ebselen was successfully used as the recognition site. The probe NapEb is sensitive (LOD = 8.4 µM) and fast for H2O2 (within 200 s). It can be used not only for qualitative and quantitative detection of H2O2 in real samples, but also has been successfully used for the imaging detection of H2O2 in MCF-7 cells with good effect. Moreover, continuous fluorescence recognition of GSH has also achieved significant results, the process is reversible and can be repeated for 5 times. The experimental results show that satisfactory results can also be obtained by structural modification at the 3-position of naphthalimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.P. Li, J.P. Yuan, Y. Fang, Iron(II) immobilized within a metal-organic framework mixed-matrix membrane as a H2O2 turn-on sensor. Inorg. Chem. 61, 3103–3110 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. L. Yuan, W.Y. Lin, Y.N. Xie, B. Chen, S. Zhu, Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. JACS 134, 1305–1315 (2012)

    Article  CAS  Google Scholar 

  3. L. Zhou, H.Y. Ding, W. Zhao, S.Q. Hu, A mitochondria targetable two-photon excited near-infrared fluorescent probe for imaging of H2O2 in live cells and tissues. Spectrochim. Acta, Part A 206, 529–534 (2019)

    Article  CAS  Google Scholar 

  4. J. Liu, J.J. Liang, C.L. Wu, Y.B. Zhao, A doubly-quenched fluorescent probe for low-background detection of mitochondrial H2O2. Anal. Chem. 91, 6902–6909 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. C.F. Lu, Y. Wang, B.Y. Xu, W. Zhang, Y. Xie, Y.Y. Chen, L.Z. Wang, X.X. Wang, A colorimetric and fluorescence dual-signal determination for iron (II) and H2O2 in food based on sulfur quantum dots. Food Chem. 366, 130613–130620 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. N. Velusamy, N. Thirumalaivasan, K.N. Bobba, A. Podder, S.P. Wu, S. Bhuniya, FRET-based dual channel fluorescent probe for detecting endogenous/exogenous H2O2/H2S formation through multicolor images. J. Photochem. Photobiol. B 191, 99–106 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. X. Zhan, X. Yu, B. Li, R. Zhou, Q. Fang, Y. Wu, Quantifying H2O2 by ratiometric fluorescence sensor platform of N-GQDs/rhodamine B in the presence of thioglycolic acid under the catalysis of Fe3+. Spectrochim. Acta. A 275, 121191–121199 (2022)

    Article  CAS  Google Scholar 

  8. Y. Wen, F. Huo, C. Yin, Organelle targetable fluorescent probes for hydrogen peroxide. Chin. Chem. Lett. 30, 1834–1842 (2019)

    Article  CAS  Google Scholar 

  9. Y. Zuo, Y. Jiao, C. Ma et al., A novel fluorescent probe for hydrogen peroxide and its application in bio-imaging. Molecules 26, 3352–3363 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Peng, S. Ye, R. Liu, J. Qu, Colorimetric and fluorescent dual-signals probes for naked-eye detection of hydrogen peroxide and applications in milk samples and in vivo. Spectrochim. Acta. A 297, 122757–122768 (2023)

    Article  CAS  Google Scholar 

  11. B.S. Li, J.B. Chen, Y. Xiong, X. Yang, J.S. Zhao, J. Sun, Development of turn-on fluorescent probes for the detection of H2O2 vapor with high selectivity and sensitivity. Sens. Actuators B Chem. 268, 475–484 (2018)

    Article  CAS  Google Scholar 

  12. Y.Y. Wang, S.Q. Li, X.Y. Zhu, X.Z. Shi, X.Y. Liu, H.X. Zhang, A novel H2O2 activated NIR fluorescent probe for accurately visualizing H2S fluctuation during oxidative stress. Anal. Chim. Acta 1202, 339670–339678 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. J.J. Lee, S.A. Yoon, J. Chun, C.H. Kang, M.H. Lee, A red-emitting styrylnaphthalimide-based fluorescent probe providing a ratiometric signal change for the precise and quantitative detection of H2O2. Anal. Chim. Acta 1080, 153–161 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. N. Li, J.X. Huang, Q.Q. Wang, Y.Q. Gu, P. Wang, A reaction based one- and two-photon fluorescent probe for selective imaging H2O2 in living cells and tissues. Sens. Actuators, B 254, 411–416 (2018)

    Article  CAS  Google Scholar 

  15. Z. Li, Imaging of hydrogen peroxide (H2O2) during the ferroptosis process in living cancer cells with a practical fluorescence probe. Talanta 212, 120804–120825 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. A. Sufian, D. Bhattacherjee, T. Mishra, K.P. Bhabak, Peroxide-responsive boronate ester-coupled turn-on fluorogenic probes: direct linkers supersede self-immolative linkers for sensing peroxides. Dyes. Pigm. 191, 109363–109373 (2021)

    Article  CAS  Google Scholar 

  17. H. Ungati, V. Govindaraj, M. Narayanan, G. Mugesh, Probing the formation of a seleninic acid in living cells by the fluorescence switching of a glutathione peroxidase mimetic. Angew. Chem. 58, 8156–8160 (2019)

    Article  CAS  Google Scholar 

  18. X.D. Zeng, C. Jiang, Q. Zhang, D.K. Chai, M.S. Ma, J. Chen, Z.G. Liu, A novel simple fluorescent probe for the detection of hydrogen peroxide in vivo with high selectivity. J. Lumin. 240, 118422–118427 (2021)

    Article  CAS  Google Scholar 

  19. W. Zhang, W. Liu, P. Li, F. Huang, H. Wang, B. Tang, Rapid-response fluorescent probe for hydrogen peroxide in living cells based on increased polarity of C-B bonds. Anal. Chem. 87, 9825–9828 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. S. Kumar, J.J. Yan, J.F. Poon, V.P. Singh, X. Lu, M. Karlsson-Ott, L. Engman, S. Kumar, Multifunctional Antioxidants: regenerable radical-trapping and hydroperoxide-decomposing ebselenols. Angew. Chem. Int. Ed Engl. 55, 3729–3733 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. S. Panday, R. Talreja, M. Kavdia, The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc. Res. 131, 104010–104025 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. D.M. Townsend, K.D. Tew, H. Tapiero, The importance of glutathione in human disease. Biomed. Pharmacother 57, 145–155 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J.W. Zhang, L. Yang, Y.X. Wang, T.Y. Cao, Z.W. Sun, J. Xu, Y.X. Liu, G. Chen, Ebselen-agents for sensing, imaging and labeling: facile and full-featured application in biochemical analysis. ACS Appl. Bio Mater. 4, 2217–2230 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. B.K. Sarma, G. Mugesh, Antioxidant activity of the anti-inflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates. Chemistry 14, 10603–10614 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. S. Helmut, Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med. 14, 313–323 (2003)

    Google Scholar 

  26. B. Tang, L.L. Yin, X. Wang, Z.Z. Chen, L.L. Tong, K.H. Xu, A fast-response, highly sensitive and specific organoselenium fluorescent probe for thiols and its application in bioimaging. Chem Commun 22, 5293–5295 (2009)

    Article  Google Scholar 

  27. Y. Tian, B.C. Zhu, W. Yang, J. Jing, X.L. Zhang, A fluorescent probe for differentiating Cys, Hcy and GSH via a stepwise interaction. Sens. Actuators, B Chem. 262, 345–349 (2018)

    Article  CAS  Google Scholar 

  28. R. Wang, L.X. Chen, P. Liu, Q. Zhang, Y.Q. Wang, Sensitive near-infrared fluorescent probes for thiols based on Se-N bond cleavage: imaging in living cells and tissues. Chemistry 18, 11343–11349 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. S.A. Yoon, J.H. Oh, S.K. Kim, M.H. Lee, Water-sensitive ratiometric fluorescent probes and application to test strip for rapid and reversible detection of water. Dyes. Pigm. 165, 421–428 (2019)

    Article  CAS  Google Scholar 

  30. X. Yuan, X.J. Xu, C.X. Zhao, F. Zhang, Y.X. Lu, Y.J. Shen, C.Y. Wang, A novel colorimetric and fluorometric fluoride ion probe based on photoinduced electron transfer signaling mechanism. Sens. Actuators, B Chem. 253, 1096–1105 (2017)

    Article  CAS  Google Scholar 

  31. X.Y. Zhu, H.W. Gao, W.Y. Zan, Y. Li, J.J. Zhang, X.W. Liu, X. Wei, F.C. Qi, X.J. Yao, H.X. Zhang, A rational designed thiols fluorescence probe: the positional isomer in PET. Tetrahedron 72, 2048–2056 (2016)

    Article  CAS  Google Scholar 

  32. X.H. Li, J.L. Yan, H.T. Zong, W.N. Wu, Y. Wang, X.L. Zhao, Y.C. Fan, Z.H. Xu, A 1,8-naphthalimide-based turn-on fluorescent probe for imaging Cu2+ in lysosomes. Inorg. Chem. Commun. 134, 109026–109032 (2021)

    Article  CAS  Google Scholar 

  33. N.I. Georgiev, R.G. Bryaskova, S.R. Ismail, N.D. Philipova, V.P. Uzunova, V.V. Bakov, R.D. Tzoneva, V.B. Bojinov, Aggregation induced emission in 1,8-naphthalimide embedded nanomicellar architecture as a platform for fluorescent ratiometric pH-probe with biomedical applications. J. Photochem. Photobiol., A 418, 113380–113389 (2021)

    Article  CAS  Google Scholar 

  34. T. Liu, F.J. Huo, J.F. Li, J.B. Chao, Y.B. Zhang, C.X. Yin, An off-on fluorescent probe for specifically detecting cysteine and its application in bioimaging. Sens. Actuators, B Chem. 237, 127–132 (2016)

    Article  CAS  Google Scholar 

  35. X. Zhang, Y.Y. Song, M. Liu, H.M. Li, H. Sun, M.M. Sun, H. Yu, Visual sensing of CO2 in air with a 3-position modified naphthalimide-derived organogelator based on a fluoride ion-induced strategy. Dyes. Pigm. 160, 799–805 (2019)

    Article  CAS  Google Scholar 

  36. A. Sarkar, C. Fouzder, S. Chakraborty, E. Ahmmed, R. Kundu, S. Dam, P. Chattopadhyay, K. Dhara, A nuclear-localized naphthalimide based fluorescent light-up probe for selective detection of carbon monoxide in living cells. Chem. Res. Toxicol. 33, 651–656 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. M. Pietka-Ottlik, P. Potaczek, E. Pkasechi, J. Mlochowski, Crucial role of selenium in the virucidal activity of benzisoselenazol-3(2H)-ones and related diselenides. Molecules 15, 8214–8228 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M.J. Tian, C.Y. Wang, Q.J. Ma, Y. Bai, J.G. Sun, C.F. Ding, A highly selective fluorescent probe for Hg2+ based on a 1, 8-naphthalimide derivative. ACS Omega 5, 18176–18184 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Wojtowicz, K. Kloc, I. Maliszewska, J. Mlochowski, M. Pietka, E. Paisecki, Azaanalogues of ebselen as antimicrobial and antiviral agents: synthesis and properties. Farmaco 59, 863–868 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglu Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 660 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Nie, S., Ding, Y. et al. A 3-position modified naphthalimide fluorescent probe for reversible response to H2O2 and GSH and cell imaging. J IRAN CHEM SOC 20, 2703–2712 (2023). https://doi.org/10.1007/s13738-023-02867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02867-x

Keywords

Navigation