Skip to main content
Log in

Diesel desulfurization by the adsorptive method using promoted Y zeolite by Zn, Cu, Co, and Ni metals

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A promoted NaY zeolite ion exchanged by Cu, Zn, Co, and Ni characterized by XRD, FESEM, BET surface area, TGA, and XRF techniques, and evaluated in desulfurization of diesel fuels as an adsorbent. Commercial diesel fuel containing 2020 ppm sulfur-containing materials is used as feed, which is reduced to 89, 75, 78, and 75 ppm by Co, Ni, Cu, and Zn ion-exchanged zeolite Y, respectively. Also, the recycle life results exhibited a high thermal and chemical stability of prepared adsorbents at 4500C. It showed that the desulfurization capacity of prepared zeolites is stable after seven cycles of the adsorption process. The optimum calcination temperature showed that the most of adhered organic molecules were eliminated from the adsorbents between 450 and 5000C. The contact time result showed that more than 92% of the desulfurization process has done in the initial 10 min. The diesel efficiency yield results showed that the most of diesel have released after the desulfurization process, and Cu, Co, Zn, and Ni ion-exchanged zeolites passed about 94, 90, 87, and 91% refined diesel after desulfurization, respectively. Therefore, an ion-exchanged zeolite Y has been considered a useful adsorbent for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. Z. Zhao, Z. Zuhra, L. Qin, Y. Zhou, L. Zhang, F. Tang et al., Confinement of microporous MOF-74(Ni) within mesoporous γ-Al2O3 beads for excellent ultra-deep and selective adsorptive desulfurization performance. Fuel. Process Technol. 176, 276–282 (2018). https://doi.org/10.1016/j.fuproc.2018.03.037

    Article  CAS  Google Scholar 

  2. Z.Y. Zhang, T.B. Shi, C.Z. Jia, W.J. Ji, Y. Chen, M.Y. He, Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. Appl. Catal. B Environ. 82, 1–10 (2008). https://doi.org/10.1016/j.apcatb.2008.01.006

    Article  CAS  Google Scholar 

  3. F. Lima, L.C. Branco, A.J.D. Silvestre, I.M. Marrucho, Deep desulfurization of fuels: are deep eutectic solvents the alternative for ionic liquids? Fuel 293, 120297 (2021). https://doi.org/10.1016/j.fuel.2021.120297

    Article  CAS  Google Scholar 

  4. F. Seyedeyn-Azad, A.H. Ghandy, S.F. Aghamiri, R. Khaleghian-Moghadam, Removal of mercaptans from light oil cuts using Cu(II)–Y type Zeolite. Fuel. Process Technol. 90, 1459–1463 (2009). https://doi.org/10.1016/j.fuproc.2009.06.028

    Article  CAS  Google Scholar 

  5. R. Ding, Y. Zu, C. Zhou, H. Wang, Z. Mo, Y. Qin et al., Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite. J. Fuel. Chem. Technol. 46, 451–458 (2018). https://doi.org/10.1016/S1872-5813(18)30020-3

    Article  CAS  Google Scholar 

  6. H.-Y. Sun, L.-P. Sun, F. Li, L. Zhang, Adsorption of benzothiophene from fuels on modified NaY zeolites. Fuel. Process Technol. 134, 284–289 (2015). https://doi.org/10.1016/j.fuproc.2015.02.010

    Article  CAS  Google Scholar 

  7. N.A. Khan, S.H. Jhung, Low-temperature loading of Cu+ species over porous metal-organic frameworks (MOFs) and adsorptive desulfurization with Cu+-loaded MOFs. J. Hazard Mater. 237–238, 180–185 (2012). https://doi.org/10.1016/j.jhazmat.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  8. A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, Deactivation studies of nano-structured iron catalyst in Fischer-Tropsch synthesis. J. Nat. Gas. Chem. 19, 333–340 (2010). https://doi.org/10.1016/S1003-9953(09)60061-X

    Article  CAS  Google Scholar 

  9. J. Wu, J. Wang, T. Guan, G. Zhang, N. Wang, K. Li, Tailored C-N bond toward defect-rich hierarchically porous carbon from coal tar pitch for high-efficiency adsorptive desulfurization. Fuel 292, 120251 (2021). https://doi.org/10.1016/j.fuel.2021.120251

    Article  CAS  Google Scholar 

  10. B. Yoosuk, A. Silajan, P. Prasassarakich, Deep adsorptive desulfurization over ion-exchanged zeolites: individual and simultaneous effect of aromatic and nitrogen compounds. J. Clean. Prod. 248, 119291 (2020). https://doi.org/10.1016/j.jclepro.2019.119291

    Article  CAS  Google Scholar 

  11. A. Aghaei, S. Shahhosseini, M.A. Sobati, Regeneration of different extractive solvents for the oxidative desulfurization process: an experimental investigation. Process Saf. Environ. Prot 139, 191–200 (2020). https://doi.org/10.1016/j.psep.2020.04.013

    Article  CAS  Google Scholar 

  12. A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, S.M.K. Shahri, Water-gas-shift kinetics over a Fe/Cu/La/Si catalyst in Fischer-Tropsch synthesis. Chem. Eng. Res. Des. 89, 262–269 (2011). https://doi.org/10.1016/j.cherd.2010.07.008

    Article  CAS  Google Scholar 

  13. S. Rostami, A. Nakhaei Pour, A. Salimi, A. Abolghasempour, Hydrogen adsorption in metal- organic frameworks (MOFs): effects of adsorbent architecture. Int. J. Hydrogen. Energy 43, 7072–7080 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.160

    Article  CAS  Google Scholar 

  14. H. Wang, L. Song, H. Jiang, J. Xu, L. Jin, X. Zhang et al., Effects of olefin on adsorptive desulfurization of gasoline over Ce(IV)Y zeolites. Fuel. Process Technol. 90, 835–838 (2009). https://doi.org/10.1016/j.fuproc.2009.03.004

    Article  CAS  Google Scholar 

  15. B. Saha, S. Vedachalam, A.K. Dalai, Review on recent advances in adsorptive desulfurization. Fuel. Process Technol. 214, 106685 (2021). https://doi.org/10.1016/j.fuproc.2020.106685

    Article  CAS  Google Scholar 

  16. A. Nakhaei Pour, A.M. Rashidi, K.J. Jozani, A. Mohajeri, P. Khorami, Support effects on the chemical property and catalytic activity of Co-Mo HDS catalyst in sulfur recovery. J. Nat. Gas. Chem. 19, 91–95 (2010). https://doi.org/10.1016/S1003-9953(09)60032-3

    Article  CAS  Google Scholar 

  17. Y. Yang, S. Mandizadeh, H. ZHANG, M. Salavati-Niasari, The role of ZnO in reactive desulfurization of diesel over ZnO@Zeolite Y: classification, preparation, and evaluation. Sep. Purif. Technol. 256, 117784 (2021). https://doi.org/10.1016/j.seppur.2020.117784

    Article  CAS  Google Scholar 

  18. N. Etemadi, A.A. Sepahy, G. Mohebali, F. Yazdian, M. Omidi, Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol. 120, 1801–1809 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.110

    Article  CAS  PubMed  Google Scholar 

  19. A. Nakhaei Pour, Z. Keyvanloo, M. Izadyar, S.M. Modaresi, Dissociative hydrogen adsorption on the cubic cobalt surfaces: a DFT study. Int. J. Hydrogen. Energy 40, 7064–7071 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.028

    Article  CAS  Google Scholar 

  20. T.P. Silva, L. Alves, S.M. Paixão, Effect of dibenzothiophene and its alkylated derivatives on coupled desulfurization and carotenoid production by Gordonia alkanivorans strain 1B. J. Environ. Manage 270, 110825 (2020). https://doi.org/10.1016/j.jenvman.2020.110825

    Article  CAS  PubMed  Google Scholar 

  21. S.A. Ganiyu, S.A. Lateef, Review of adsorptive desulfurization process: overview of the non-carbonaceous materials, mechanism and synthesis strategies. Fuel 294, 120273 (2021). https://doi.org/10.1016/j.fuel.2021.120273

    Article  CAS  Google Scholar 

  22. S. Farahani, M.A. Sobati, A novel method for the management of sulfone-rich waste produced in the oxidative desulfurization (ODS) process. Chinese J. Chem. Eng. 28, 2447–2456 (2020). https://doi.org/10.1016/j.cjche.2020.04.004

    Article  CAS  Google Scholar 

  23. J. Wang, F. Xu, W. Xie, Z. Mei, Q. Zhang, J. Cai et al., The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y. J. Hazard Mater. 163, 538–543 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.027

    Article  CAS  PubMed  Google Scholar 

  24. A. Nakhaei Pour, E. Hosaini, A. Tavasoli, A. Behroozsarand, F. Dolati, Intrinsic kinetics of Fischer-Tropsch synthesis over Co/CNTs catalyst: effects of metallic cobalt particle size. J. Nat. Gas. Sci. Eng. 21, 772–778 (2014). https://doi.org/10.1016/j.jngse.2014.10.008

    Article  CAS  Google Scholar 

  25. K. Yang, Y. Yan, W. Chen, H. Kang, Y. Han, W. Zhang et al., The high performance and mechanism of metal–organic frameworks and their composites in adsorptive desulfurization. Polyhedron 152, 202–215 (2018). https://doi.org/10.1016/j.poly.2018.06.036

    Article  CAS  Google Scholar 

  26. Q. Huo, J. Li, X. Qi, G. Liu, X. Zhang, B. Zhang et al., Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization. Chem. Eng. J. 378, 122106 (2019). https://doi.org/10.1016/j.cej.2019.122106

    Article  CAS  Google Scholar 

  27. A. Nakhaei Pour, M.R. Housaindokht, S.M.K. Shahri, E.G. Babakhani, M. Irani, Size dependence on reduction kinetic of iron based Fischer-Tropsch catalyst. J. Ind. Eng. Chem. 17, 596–602 (2011). https://doi.org/10.1016/j.jiec.2011.05.002

    Article  CAS  Google Scholar 

  28. S. Wang, Y. Zu, Y. Qin, X. Zhang, L. Song, Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms. J. Fuel. Chem. Technol. 48, 52–62 (2020). https://doi.org/10.1016/S1872-5813(20)30003-7

    Article  Google Scholar 

  29. A. Tavasoli, A. Nakhaei Pour, M.G. Ahangari, Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst. J. Nat. Gas. Chem. 19, 653–659 (2010). https://doi.org/10.1016/S1003-9953(09)60133-X

    Article  CAS  Google Scholar 

  30. F. Tian, Q. Shen, Z. Fu, Y. Wu, C. Jia, Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y. Fuel. Process Technol. 128, 176–182 (2014). https://doi.org/10.1016/j.fuproc.2014.07.018

    Article  CAS  Google Scholar 

  31. D.J. Moon, W.T. Lim, K. Seff, Crystal structure of a hydrogen sulfide sorption complex of anhydrous Mn2+-exchanged zeolite Y (FAU, Si/Al = 1.56). Microporous Mesoporous Mater. 279, 432–8 (2019). https://doi.org/10.1016/j.micromeso.2019.01.027

    Article  CAS  Google Scholar 

  32. A. Khaleque, M.M. Alam, M. Hoque, S. Mondal, Haider J. Bin, B. Xu et al., Zeolite synthesis from low-cost materials and environmental applications: a review. Environ. Adv. 2, 100019 (2020). https://doi.org/10.1016/j.envadv.2020.100019

    Article  Google Scholar 

  33. S. Nuntang, P. Prasassarakich, C. Ngamcharussrivichai, Comparative study on adsorptive removal of thiophenic sulfurs over Y and USY zeolites. Ind. Eng. Chem. Res. 47, 7405–7413 (2008). https://doi.org/10.1021/ie701785s

    Article  CAS  Google Scholar 

  34. M.L.M. Oliveira, A.A.L. Miranda, C.M.B.M. Barbosa, C.L. Cavalcante, D.C.S. Azevedo, E. Rodriguez-Castellon, Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(I), Ni(II) and Zn(II). Fuel 88, 1885–1892 (2009). https://doi.org/10.1016/j.fuel.2009.04.011

    Article  CAS  Google Scholar 

  35. Y. Shi, X. Yang, F. Tian, C. Jia, Y. Chen, Effects of toluene on thiophene adsorption over NaY and Ce(IV)Y zeolites. J. Nat. Gas. Chem. 21, 421–425 (2012). https://doi.org/10.1016/S1003-9953(11)60385-X

    Article  CAS  Google Scholar 

  36. Y. Shi, W. Zhang, H. Zhang, F. Tian, C. Jia, Y. Chen, Effect of cyclohexene on thiophene adsorption over NaY and LaNaY zeolites. Fuel. Process. Technol. 110, 24–32 (2013). https://doi.org/10.1016/j.fuproc.2013.01.008

    Article  CAS  Google Scholar 

  37. B. Jiang, T. Zhu, N. Jiang, M. Gong, G. Yang, F. Li et al., Ultra-deep adsorptive removal over hierarchically structured AgCeY zeolite from model gasoline with high competitor content. J. Clean Prod. 297, 126582 (2021). https://doi.org/10.1016/j.jclepro.2021.126582

    Article  CAS  Google Scholar 

  38. R. Dehghan, M. Anbia, Zeolites for adsorptive desulfurization from fuels: a review. Fuel. Process Technol. 167, 99–116 (2017). https://doi.org/10.1016/j.fuproc.2017.06.015

    Article  CAS  Google Scholar 

  39. A.J. Hernández-Maldonado, R.T. Yang, Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu(I)−Y Zeolite. Ind. Eng. Chem. Res. 42, 3103–3110 (2003). https://doi.org/10.1021/ie0301132

    Article  CAS  Google Scholar 

  40. B. Yang, X. Zhou, Y. Chen, Y. Fang, H. Luo, Preparation of a spindle δ-MnO2@Fe/Co-MOF-74 for effective adsorption of arsenic from water. Colloids Surf. A Physicochem. Eng. Asp. 629, 127378 (2021). https://doi.org/10.1016/j.colsurfa.2021.127378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this work appreciate the financial support of the Ferdowsi University of Mashhad, Mashhad, Iran (Grant No.3/56862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, S., Nakhaei Pour, A. & Mohammadi, A. Diesel desulfurization by the adsorptive method using promoted Y zeolite by Zn, Cu, Co, and Ni metals. J IRAN CHEM SOC 20, 2069–2078 (2023). https://doi.org/10.1007/s13738-023-02827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02827-5

Keywords

Navigation