Skip to main content

Advertisement

Log in

Hydrogen adsorption of some new Mercury(II)-benzotriazole dithiocarbamate mixed ligand complexes: kinetic studies

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Preparation of series of new Mercury (II) mixed ligand complexes of benzotriazol dithiocarbamate (DTC) [Hg(DTC)2] and phosphine or amine ligands of the type [Hg(DTC)2(diphosphine)] (2–5), [(Hg(DTC)2(diamine)](6,7), [Hg(DTC)2(SPPh3)2] (8) and [Hg(DTC)2(PPh3)2] (9) has been done. This preparation has yielded good amount of these complexes. These complexes were fully characterized by elemental analysis, conductivity measurements and spectroscopic data (FTIR, 1H, 31P-{1H} NMR. Three as–prepared complexes were used for hydrogen storage at a pressure range of 0–100 bar at 77 K. The results prove that the complex [Hg(DTC)2(dppf)] has the ability to store 3.7 wt.% at 77 K under 90 bar and the storage was started under only 20 bar (0.22 wt.%). The kinetic studies on the hydrogen storage in this complex were conducted and the results prove that the storage was conducted in 60 s only and the adsorption is fitted to the second pseudo order with R2 = 0.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1:
Scheme 2:
Scheme 3:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.N. Gupta, V. Singh, V. Kumar, A. Rajput, L. Singh, M.G. Drew, N. Singh, Syntheses, crystal structures and conducting properties of new homoleptic copper (II) dithiocarbamate complexes. Inorg. Chim. Acta 408, 145–151 (2013)

    Article  CAS  Google Scholar 

  2. J.G. Leipoldt, P. Coppens, Correlation between structure-and temperature-dependent magnetic behavior of iron dithiocarbamate complexes. Crystal structure of tris (N, N diethyldithiocarbamato) iron (III) at 297 deg and 79 deg K. Inorg. Chem. 12, 2269–2274 (1973)

    Article  CAS  Google Scholar 

  3. P. Ganguli, V.R. Marathe, S. Mitra, Paramagnetic anisotropy and electronic structure of S = 3/2 halobis (diethyldithiocarbamato) iron (III) I Spin-Hamiltonian formalism and ground-state zero-field splittings of ferric ion. Inorg. Chem. 14, 970–973 (1975)

    Article  CAS  Google Scholar 

  4. I.P. Ferreiraa, G.M. de Lima, E.B. Paniago, J.A. Takahashi, C.B. Pinheiro, Synthesis, characterization and antifungal activity of new dithiocarbamate-based complexes of Ni (II), Pd (II) and Pt (II). Inorg. Chim. Acta 423, 443–449 (2014)

    Article  Google Scholar 

  5. L. Guerrini, J.V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Functionalization of Ag nanoparticles with dithiocarbamate calix [4] arene as an effective supramolecular host for the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Langmuir 22, 10924–10926 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. G. Faraglia, D. Fregona, S. Sitran, L. Giovagnini, C. Marzano, F. Baccichetti, U. Casellato, R. Graziani, Platinum (II) and palladium (II) complexes with dithiocarbamates and amines: synthesis, characterization and cell assay. J. Inorg. Biochem. 83, 31–40 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Zhao, W. Pérez-Segarra, Q. Shi, A. Wei, Dithiocarbamate assembly on gold. J. Am. Chem. Soc. 127, 7328–7329 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A.N. Gupta, V. Kumar, V. Singh, A. Rajput, L.B. Prasad, M.G.B. Drew, N. Singh, Influence of functionalities on the structure and luminescent properties of organotin (IV) dithiocarbamate complexes. J. Organomet. Chem. 787, 65–72 (2015)

    Article  CAS  Google Scholar 

  9. B. Guo, B. Liu, J. Yang, S. Zhang, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: a review. J. Environ. Manag. 193, 410–422 (2017)

    Article  CAS  Google Scholar 

  10. R. Abu-El-Halawa, S.A. Zabin, Removal efficiency of Pb, Cd, Cu, and Zn from polluted water using dithiocarbamate ligands. J. Taibah. Univ. for Sci. 11(1), 57–65 (2017)

    Article  Google Scholar 

  11. J. Hou, R. Lu, M. Sun, S.A. Baig, T. Tang, L. Cheng, X. Xu, Effect of heavy metals on the stabilization of mercury (II) by DTCR in desulfurization solutions. J. Hazard. Mater. 217, 224–230 (2012)

    Article  PubMed  Google Scholar 

  12. G. Gomathi, S. Thirumaran, S. Ciattini, Polyhedron 102, 424–433 (2015)

    Article  CAS  Google Scholar 

  13. G. Marimuthu, K. Ramalingam, C. Rizzoli, M. Arivanandhan, J Nanopart Res 14, 710 (2012)

    Article  Google Scholar 

  14. D.C. Onwudiwe, P.A. Ajibade, Int. J. Mol. Sci. 13, 9502–9513 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. Tokyo, J. Appl. Phys. 461, 4857 (1975)

    Google Scholar 

  16. M.A. Zemaitis, F.E. Greene, Toxicol. Appl. Pharmacol. 48, 343 (1979)

    Article  CAS  PubMed  Google Scholar 

  17. R.F. Borch, J.C. Katz, P.H. Lieder, M.E. Pleasants, Proc. Natl. Acad. Sci. USA 77, 5441 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R.F. Borch, D.L. Bodenner, J.C. Katz, in Platinum Coordination Complexes in Cancer Chemotherapy. ed. by M.P. Hacker, E.B. Douple, I.H. Krakoff (Ni-jhoff, Boston, 1984), pp.154–164

    Chapter  Google Scholar 

  19. D.L. Bodenner, P.C. Dedon, P.C. Keng, J.C. Katz, R.F. Borch, Cancer Res. 46, 2751 (1986)

    CAS  PubMed  Google Scholar 

  20. M. Pavlicek, Z. Travnicek, R. Pastorek, Trans. Met. Chem. 28, 260 (2003)

    Article  CAS  Google Scholar 

  21. Y. Nakatsu, Y. Nakamura, K. Matsumoto, S. Ooi, Inorg. Chim. Acta 196, 81 (1992)

    Article  CAS  Google Scholar 

  22. Subhi DSAM, Khaleel LI, & Alheety MA (2020) Preparation, characterization and H2 storage capacity of newly Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) mixed ligand complexes of paracetamol and saccharine. In AIP Conference Proceed. 2213 1 020306. AIP Publishing LLC.

  23. A.S. Al-Janabi, A.Y. Osama’a, M.A. Alheety, Novel Mercury (II) 1-Phenyl-1H-tetrazol-5-thiol and carbon nanotube complexes: synthesis, characterization and H2 storage capacities. Chem. Data Collect. 28, 100399 (2020)

    Article  CAS  Google Scholar 

  24. L.A. Al-Doori, A.A. Irzoqi, H.M. Jirjes, A.H. AL-Obaidi, M.A. Alheety, Zn (II)-isatin-3-thiosemicarbazone complexes with phosphines or diamines for hydrogen storage and anticancer studies. Inorg. Chem. Commun. 140, 109454 (2022)

    Article  CAS  Google Scholar 

  25. A.I. Al-Nassiry, A.S. Al-Janabi, O.Y. Thayee Al-Janabi, P. Spearman, M.A. Alheety, Novel dithiocarbamate–Hg (II) complexes containing mixed ligands: synthesis, spectroscopic characterization, and H2 storage capacity. J. Chin. Chem. Soc. 67(5), 775–781 (2020)

    Article  CAS  Google Scholar 

  26. A.A. Al-Isawi, S.A. Al-Jibori, A.S. Al-Janabi, M.A. Alheety, Hydrogen storage capacity and thermodynamic calculations of Mercury (II) and Palladium (II) Syn-2-Pyridine Aldoxime complexes. In Macromol. Symp. 401(1), 2100388 (2022)

    Article  CAS  Google Scholar 

  27. A.S.M. Al-Janabi, O.A.Y. Al-Samrai, T.A. Yousef, Appl. Organomet. Chem 34(12), e5967 (2020). https://doi.org/10.1002/aoc.5967

    Article  CAS  Google Scholar 

  28. M.M. Salman, A.A. Al-Dulaimi, A.S.M. Al-Janabi, M.A. Al-Heety, Mater. Today: proceed. 43(2), 863–868 (2020). https://doi.org/10.1016/j.matpr.2020.07.082

    Article  CAS  Google Scholar 

  29. S.A. Al-Jibori, A.S.M. Al-Janabi, S.W.M. Al-Sahan, C. Wagner, J. Mol. Struct. 1227, e129524 (2021). https://doi.org/10.1016/j.molstruc.2020.129524

    Article  CAS  Google Scholar 

  30. A.S.M. Al-Janabi, M.M. Kadhim, A.I.A. Al-Nassiry, T.A. Yousef, Appl. Organomet. Chem. 35(2), e6108 (2021). https://doi.org/10.1002/aoc.61088

    Article  CAS  Google Scholar 

  31. A.S.M. Al-Janabi, A.M. Saleh, M.R. Hatshan, J. Chin. Chem. Soc. 68(6), 1–2 (2021). https://doi.org/10.1002/jccs.202000504

    Article  CAS  Google Scholar 

  32. S.A. Al-Jibori, A.S.M. Al-Janabi, S.W.M. Al-Sahan, C. Wagner, J. Mol. Struct. 1227, 129524 (2021). https://doi.org/10.1016/j.molstruc.2020.129524

    Article  CAS  Google Scholar 

  33. P.J. Heard, Main group dithiocarbamate complexes. Prog. inorg. Chem. 53, 1–69 (2005). https://doi.org/10.1002/0471725587.ch1

    Article  CAS  Google Scholar 

  34. G. Hogarth, Transition metal dithiocarbamates: 1978–2003. Prog. Inorg. Chem. 53, 71–585 (2005). https://doi.org/10.1002/0471725587.ch2

    Article  CAS  Google Scholar 

  35. S.A. Al-Jibori, A.S.M. Al-Janabi, S. Basak-Modi, S.S. Mohamed, H. Schmidt, Trans. Met. Chem. 40, 917–921 (2015)

    Article  CAS  Google Scholar 

  36. S.A. Al-Jibori, A.R. Al-Jibori, H.A. Mohamad, A.S.M. Al-Janabi, C. Wagner, G. Hogarth, Inorg. Chim. Acta. 488, 152 (2019). https://doi.org/10.1016/j.ica.2019.01.0177

    Article  CAS  Google Scholar 

  37. S.A. Al-Jibori, L.A. Al-Doori, A.S. Al-Janabi, M.A. Alheety, H. Akbaş, A. Karadag, J. Mol. Struct. 1207, 127832 (2020). https://doi.org/10.1016/j.molstruc.2020.1278322

    Article  CAS  Google Scholar 

  38. B.D. Salih, M.A. Alheety, A.R. Mahmood, A. Karadag, D.J. Hashim, Hydrogen storage capacities of some new Hg (II) complexes containing 2-acetylethiophene. Inorg. Chem. Commun. 103, 100–106 (2019)

    Article  CAS  Google Scholar 

  39. A.A. Hameed, M.A. Alheety, A.R. Mahmood, S.A. Al-Jibori, A. Karadag, H2 storage abilities of some novel Pd (II) complexes containing 2H [1, 4] benzothiazin-3 (4H)-one. Inorg. Chem. Commun. 106, 11–17 (2019)

    Article  CAS  Google Scholar 

  40. S.A. Al-Jibori, M.M. Amen, M.A. Alheety, A. Karadag, C. Wagner, Hydrogen storage capacity of novel mixed ligand complexes of lead (II): molecular structure of [Pb2 (tsac) 4 (µ-dppe)]. Inorg. Chem. Commun. 125, 108444 (2021)

    Article  CAS  Google Scholar 

  41. Seader, J. D., Henley, E. J., & Roper, D. K. (1998). Separation process principles (Vol. 25, pp. 123-124). New York: wiley.

  42. A. Gil, L. Santamaría, S.A. Korili, Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloid Interface Sci. Commun. 22, 25–28 (2018)

    Article  CAS  Google Scholar 

  43. S.V. Sawant, M.D. Yadav, S. Banerjee, A.W. Patwardhan, J.B. Joshi, K. Dasgupta, Hydrogen storage in boron-doped carbon nanotubes: effect of dopant concentration. Int. J. Hydr. Energy 46(79), 39297–39314 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tikrit University for its support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa A. Alheety or Ahmed S. Al-Janabi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Janabi, E.M.A., Alheety, M.A., Al-Jibori, S.A. et al. Hydrogen adsorption of some new Mercury(II)-benzotriazole dithiocarbamate mixed ligand complexes: kinetic studies. J IRAN CHEM SOC 20, 1781–1790 (2023). https://doi.org/10.1007/s13738-023-02796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02796-9

Keywords

Navigation