Skip to main content
Log in

Hybrid proton-containing decavanadate-organic crystal: synthesis, structure and enhancement of proton-conducting performance

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new decavanadate hybrid material, (C4H7N2S)4[H2V10O28]·4H2O, (2A4MT V10), was successfully grown in aqueous solution as single crystals with acidic decavanadate (V10) cluster and 2-amino-4-methyltiazolium (2A4MT) cation. It was thoroughly characterized by XRD, IR, DTA-TGA and alternating current impedance spectroscopy measurements. Crystal structure of (2A4MT V10) exhibits a typical 3D-porous supramolecular topology of diprotonated V10 clusters and water molecules featuring tunnel-voids filled with 2A4MT cations mainly connected through O···H/H···O, H bonding with considerable contributions of 65.9% as indicated by Hirshfeld surface analysis. The conductivity study shows that the hybrid crystal possesses significant conductivities above 10−4 S cm−1 in the temperature range of 130–180 °C to rich 9 × 10−4 S cm−1 at 423 K (150 °C), which can be considered as promising proton conductor for fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All relevant data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637 (2004). https://doi.org/10.1021/cr020715f

    Article  CAS  PubMed  Google Scholar 

  2. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Mater. Renew. Sustain. Energy (2010). https://doi.org/10.1142/9789814317665_0031

    Article  Google Scholar 

  3. G. Alberti, M. Casciola, Solid state protonic conductors, present main applications and future prospects. Solid State Ion. 145, 3 (2001). https://doi.org/10.1016/S0167-2738(01)00911-0

    Article  CAS  Google Scholar 

  4. N. Ogiwara, T. Iwano, T. Ito, S. Uchida, Proton conduction in ionic crystals based on polyoxometalates. Coord. Chem. Rev. 462, 214524 (2022). https://doi.org/10.1016/j.ccr.2022.214524

    Article  CAS  Google Scholar 

  5. G. Wang, J. Li, L. Zhai, X. Li, H. He, H. Guo, H. Li, C. Zhao, L. Wu, H. Li, Polyoxometalate-polymer nanocomposites with multiplex proton transport channels for high-performance proton exchange membranes. Compos. Sci. Technol. 232, 109842 (2023). https://doi.org/10.1016/j.compscitech.2022.109842

    Article  CAS  Google Scholar 

  6. D. Bose, A. Mukherjee, G. Mitra, Energy recovery prospects of fuel cell technologies: sustainability and bioremediation. Aust. J. Mech. Eng. 20, 736 (2022). https://doi.org/10.1080/14484846.2020.1747152

    Article  Google Scholar 

  7. L. Zhang, T. Cui, X. Cao, C. Zhao, Q. Chen, L. Wu, H. Li, Polyoxometalate-polymer hybrid materials as proton exchange membranes for fuel cell applications. Angew. Chem. Int. Ed. 56, 9013 (2017). https://doi.org/10.3390/molecules24193425

    Article  CAS  Google Scholar 

  8. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345 (2001). https://doi.org/10.1038/35104620

    Article  CAS  PubMed  Google Scholar 

  9. A. Martinelli, J.M.O. Mato, M.N. Garaga, K. Elamin, S.M.H. Rahman, J.W. Zwanziger, U.W. Zwanziger, L.M. Varela, A new solid-state proton conductor: the salt hydrate based on imidazolium and 12-tungstophosphate. J. Am. Chem. Soc. 143, 13895 (2021). https://doi.org/10.1021/jacs.1c06656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. X.Y. Qian, X. Tong, Q.Y. Wu, Z.Q. He, F.H. Cao, W.F. Yan, Synthesis and electrochemical properties of substituted heteropoly acid with Dawson structure H7[In(H2O)P2W17O61]·23H2O. Dalton Trans. 41, 9897 (2012). https://doi.org/10.1007/s11434-011-4445-8

    Article  CAS  PubMed  Google Scholar 

  11. P.G. Romero, J.A. Asensio, S. Borros, Hybrid proton conducting membranes for polymer electrolyte fuel cells phosphomolybdic acid doped poly(2,5-benzimidazole)-(ABPBIH3PMo12O40). Electrochim. Acta 50, 4715 (2005). https://doi.org/10.1016/j.electacta.2005.02.029

    Article  CAS  Google Scholar 

  12. M. Daraie, M. Mirzaei, M. Bazargan, V.S. Amiri, B.A. Sanati, M.M. Heravi, Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Sci. Rep. 12(1), 12004 (2022). https://doi.org/10.1038/s41598-022-16384-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Z.Y. Ghasemi, M.M. Heravi, M. Malmir, G. Jahani, M.B. Bisafar, M. Mirzaei, Fabrication of heterogeneous-based lacunary polyoxometalates as efficient catalysts for the multicomponent and clean synthesis of pyrazolopyranopyrimidines. Inorg. Chem. Commun. 140, 109456 (2022). https://doi.org/10.1016/j.inoche.2022.109456

    Article  CAS  Google Scholar 

  14. M.M. Heravi, T. Momeni, M. Mirzaei, V. Zadsirjan, M. Tahmasebi, An amino acid@isopolyoxometalate nanoparticles catalyst containing aspartic acid and octamolybdate for the synthesis of functionalized spirochromenes. Inorg. Nano-Met. Chem. 51, 896 (2021). https://doi.org/10.1080/24701556.2020.1813172

    Article  CAS  Google Scholar 

  15. M. Ghanbarian, S.Y.S. Beheshtiha, M.M. Heravi, M. Mirzaei, V. Zadsirjan, N. Lotfian, A nano-sized Nd–Ag@polyoxometalate catalyst for catalyzing the multicomponent Hantzsch and Biginelli reactions. J. Clust. Sci. 31(6), 1295 (2020). https://doi.org/10.1007/s10876-019-01739-w

    Article  CAS  Google Scholar 

  16. M.M. Heravi, T. Hosseinnejad, M. Tamimi, V. Zadsirjana, M. Mirzaei, 12-Tungstoboric acid (H5BW12O40) as an efficient Lewis acid catalyst for the synthesis of chromenopyrimidine-2,5-diones and thioxochromenopyrimidin-5-ones: joint experimental and computational study. J. Mol. Struct. 1205, 127598 (2020)

    Article  CAS  Google Scholar 

  17. S.H. Baghan, M. Mirzaei, H.E. Hosseini, V. Zadsirjan, M.M. Heravi, J.T. Mague, An inorganic–organic hybrid material based on a Keggin-type polyoxometalate@Dysprosium as an effective and green catalyst in the synthesis of 2-amino-4H-chromenes via multicomponent reactions. Appl. Organomet. Chem. 34(9), e5793 (2020). https://doi.org/10.1002/aoc.5793

    Article  CAS  Google Scholar 

  18. N. Lotfian, M.M. Heravi, M. Mirzaei, M. Daraie, Investigation of the uncommon basic properties of [Ln(W5O18)2]9– (Ln = La, Ce, Nd, Gd, Tb) by changing central lanthanoids in the syntheses of pyrazolopyranopyrimidines. J. Mol. Struct 1199, 126953 (2020). https://doi.org/10.1016/j.molstruc.2019.126953

    Article  CAS  Google Scholar 

  19. N. Ogiwara, M. Tomoda, S. Miyazaki, Z. Weng, H. Takatsu, H. Kageyama, T. Misawa, T. Ito, S. Uchida, Integrating molecular design and crystal engineering approaches in non-humidified intermediate-temperature proton conductors based on a Dawson-type polyoxometalate and poly(ethylene glycol) derivatives. Nanoscale 13, 8049 (2021). https://doi.org/10.1039/D1NR01220G

    Article  CAS  PubMed  Google Scholar 

  20. S. Otobe, Y. Kiyota, S. Magira, T. Misawa, K. Fujio, H. Naruke, S. Uchida, T. Ito, Conductive inorganic-organic hybrid layered crystals composed of Keggin-type polyoxotungstates and a heterocyclic surfactant. Eur. Inorg. Chem. 3, 442 (2019). https://doi.org/10.1002/ejic.201800535

    Article  CAS  Google Scholar 

  21. M. Taira, H. Sato, K. Fukumoto, T. Misawa, H. Naruke, T. Ito, Polyoxovanadate-surfactant hybrid layered crystals toward anhydrous proton conductors. J. Mol. Struct. 1226, 129355 (2021). https://doi.org/10.1016/j.molstruc.2020.129355

    Article  CAS  Google Scholar 

  22. M. Yamada, I. Honma, Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes. J. Phys. Chem. B 110, 20486 (2006). https://doi.org/10.1021/jp063488k

    Article  CAS  PubMed  Google Scholar 

  23. T. Ito, M. Taira, K. Fukumoto, K. Yamamoto, H. Naruke, K. Tomita, K. Bull, Polyoxovanadate-surfactant hybrid layered crystal containing one-dimensional hydrogen-bonded cluster chain. Chem. Soc. Jpn. 85, 1222 (2012). https://doi.org/10.1246/bcsj.20120157

    Article  CAS  Google Scholar 

  24. G.M. Sheldrick, Acta Cryst. A64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  25. L.J. Farrugia, WINGX (University of Glasgow, Glasgow, 2005)

    Google Scholar 

  26. K. Brandenburg, H. Putz, DIAMOND (Crystal Impact GbR, Bonn, 1999)

    Google Scholar 

  27. D. Kobashi, S. Kohara, J. Yamakawa, A. Kawahara, Structure d’un diphosphate synthétique de cobalt: Co2P2O7. Acta Crystallogr. 53, 1523 (1997). https://doi.org/10.1107/S0108270197006689

    Article  Google Scholar 

  28. M.T. Pope, Heteropoly and IsopolyOxometalates, vol. 18 (Springer, New York, 1983)

    Book  Google Scholar 

  29. I.D. Brown, M. O’Keefe, A. Navrotsky (eds.), Structure and Bonding in Crystals (Academic Press, New York, 2012). https://doi.org/10.1007/BF00646987

    Book  Google Scholar 

  30. M. Louati, R. Ksiksi, L. Jouffret, M.F. Zid, Preparation, crystal structure and spectroscopy characterization of vanadium (V) complex, 2-amino-4-picolinium,2-methylimidazolium decavanadate hydrate (C4N2H7)4(C6N2H10)V10O28·2H2O. CSTA 8, 1 (2019). https://doi.org/10.4236/csta.2019.81001

    Article  CAS  Google Scholar 

  31. V. Arjunan, S. Sakiladevi, T. Rani, C.V. Mythili, S. Mohan, FTIR, FT-Raman, FT-NMR, UV–visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole. Spectrochim-Part A 88, 220 (2012). https://doi.org/10.1016/j.saa.2011.12.037

    Article  CAS  Google Scholar 

  32. S. Toumi, N.R. Ramond, S. Akriche, Decavanadate cage-like cluster templated by organic counter cation: synthesis, characterization and its antimicrobial effect against gram positive E. Feacium. J. Clust. Sci. 26, 1821 (2015). https://doi.org/10.1007/s10876-015-0881-y

    Article  CAS  Google Scholar 

  33. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Novel tools for visualizing and exploring intermol­ecular interactions in molecular crystals. Science 60, 627 (2004). https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  34. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer (University of Western Australia, Perth, 2013). https://doi.org/10.4236/jtts.2013.32A005

    Book  Google Scholar 

  35. M. Taira, H. Sato, K. Fukumoto, T. Misawa, H. Naruke, T. Ito, J. Mol. Struct. 1226, 129355 (2021)

    Article  CAS  Google Scholar 

  36. S.Ü. Çelik, A. Bozkurt, S.S. Hosseini, Alternatives toward proton conductive anhydrous membranes for fuel cells: heterocyclic protogenic solvents comprising polymer electrolytes. Prog. Polym. Sci. 37, 1265 (2012). https://doi.org/10.1016/j.progpolymsci.2011.11.006

    Article  CAS  Google Scholar 

  37. H. Ma, B. Liu, B. Li, L. Zhang, Y.G. Li, H.Q. Tan, H.Y. Zang, G. Zhu, Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 138, 5897 (2016). https://doi.org/10.1021/jacs.5b13490

    Article  CAS  PubMed  Google Scholar 

  38. A. Maalaoui, O. Pérez, M. Rzaigui, S.T. Akriche, Enhancement with Hirshfeld surface analysis of structural, electrical, dielectric and luminescent performance of two bioactive V-substituted polytungstates. J. Alloys Comp 95, 1061 (2016). https://doi.org/10.1016/j.jallcom.2016.10.231

    Article  CAS  Google Scholar 

  39. A. Boukhachem, A. Ziouche, M. Ben Amor, O. Kamoun, M. Zergoug, H. Maghraoui-Meherzi, A. Yumak, K. Boubaker, M. Amlouk, Physical investigations on perovskite LaMnO3-δ sprayed thin films for spintronic applications. Mater. Res. Bull. 74, 202 (2016). https://doi.org/10.1016/j.materresbull.2015.10.003

    Article  CAS  Google Scholar 

  40. A. Mater, A. Othmani, A. Boukhachem, A. Madani, Cathode performance study of La0.6Sr0.4Co0.8Fe0.2O3-δ with various electrolyte-doped ceria Ce0.8Sm0.17Ln0.03O1.9 for IT-solid oxide fuel cell. J. Electron. Mater. 49, 4123 (2020). https://doi.org/10.1007/s11664-020-08167-x

    Article  CAS  Google Scholar 

  41. A.K. Jonscher, The electrical properties of silicon monoxide. Nature 29, 7 (1975). https://doi.org/10.1016/0040-6090(75)90211-4

    Article  Google Scholar 

  42. M. Ben Amor, A. Boukhachem, K. Boubaker, M. Amlouk, Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications. Mater. Sci. Semicond. Process. 27, 994 (2014). https://doi.org/10.1016/j.mssp.2014.08.008

    Article  CAS  Google Scholar 

  43. M. Abbassi, R. Ternane, I. Sobrados, A. Madani, M. Trabelsi-Ayadi, Ionic conductivity of apatite-type solid electrolyte ceramics Ca2−xBaxLa4Bi4(SiO4)6O2 (0≤x≤2). J. Sanz. Ceram. Int. 39, 9215 (2013). https://doi.org/10.1016/j.ceramint.2013.05.026

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TOTA, AM, MR, STA, AB and JA. The first draft of the manuscript was written by TOTA and AM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Samah Toumi Akriche.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4247 kb)

Supplementary file2 (CIF 4087 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, T.O.T., Maalaoui, A., Boukhachem, A. et al. Hybrid proton-containing decavanadate-organic crystal: synthesis, structure and enhancement of proton-conducting performance. J IRAN CHEM SOC 20, 1345–1356 (2023). https://doi.org/10.1007/s13738-023-02759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02759-0

Keywords

Navigation