Skip to main content
Log in

New reusable heterogeneous catalyst in the MPV reduction in cyclohexenones: moderate one-pot synthesis of cyclohexenols (effect of methyl substituents)

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Inorganic compounds grafted MCM-41 catalysts and the Meerwein–Ponndorf–Verley reduction (MPV) on these heterogeneous catalysts are very attractive subject areas in chemistry. New mesoporous In(OiPr)3-MCM-41 was tested for MPV reaction of cyclohexenones. Effect of methyl substituents on cyclohexenol yield was investigated. Also, reusability of catalyst was studied. Mesoporous In(OiPr)3-MCM-41 catalyzed MPV reduction in cyclohexenones to corresponding cyclohexenols in pretty good yields. Higher reaction times and lower alcohol yields for the methyl substitute cyclohexenones were obtained with In(OiPr)3-MCM-41 compared with the non-sübstitute cyclohexenone. Methyl substitute cyclohexenones as compared with non-substitute cyclohexenone compounds have lower activities that probably resulted from steric hindrance of alkyl group. Methyl group can create steric effect for cite accessibility of the catalyst. Moreover, In(OiPr)3-MCM-41 catalyst exhibited excellent recyclability for six MPV reduction round without significant loss of the reactivity. Also, the In(OiPr)3 does not leach during the reduction reaction. Heterogeneous In(OiPr)3-MCM-41 was found as very influential catalyst for the preparation of cyclohexenol derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Figure. 2
Scheme 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. J.F. Ruiz, C. Jimenez-Sanchidrian, Curr. Org. Chem (2007). https://doi.org/10.2174/138527207781662500

    Article  Google Scholar 

  2. H. Meerwein, R. Schmidt, Liebigs Ann. (1925). https://doi.org/10.1002/jlac.19254440112

    Article  Google Scholar 

  3. W. Pondorf, Angew. Chem. (1926). https://doi.org/10.1002/ange.19260390504

    Article  Google Scholar 

  4. M. Verley, Bull Soc Chim Fr (1925)

  5. D.A. Evans, S.G. Nelson, M.R. Gagne, A.R. Muci, J. Am. Chem. Soc (1993). https://doi.org/10.1021/ja00074a057

    Article  Google Scholar 

  6. T. Ooi, T. Miura, K. Maruoka, Angew. Chem. (1998). https://doi.org/10.1002/(SICI)1521-3773

    Article  Google Scholar 

  7. K. Nishide, Y. Shigeta, K. Obata, M. Node, J. Am. Chem. Soc (1996). https://doi.org/10.1021/ja963098j

    Article  Google Scholar 

  8. J. Yin, M.A. Huffman, K.M. Conrad, J.D. Armstrong, J Org Chem (2006). https://doi.org/10.1021/jo052121t01

    Article  Google Scholar 

  9. B. Uysal, B.S. Oksal, J. Chem. Sci. (2011). https://doi.org/10.1007/s12039-011-0116-1

    Article  Google Scholar 

  10. G.K. Chuah, S. Jaenicke, Y.Z. Zhu, S.H. Liu, Curr. Org. Chem (2006). https://doi.org/10.2174/138527206778249621

    Article  Google Scholar 

  11. R. López-Asensio, C.P.J. Gómez, C.G. Sancho, R. Moreno-Tost, J. Cecilia, P.M. Torres, Int. J. Mol. Sci (2019). https://doi.org/10.3390/ijms20040828

    Article  Google Scholar 

  12. B.U. Karatas, B.S. Oksal, E. Karatas, J. Incl. Phenom. Macrocycl. Chem. (2017). https://doi.org/10.1007/s10847-016-0680-6

    Article  Google Scholar 

  13. B. Uysal, B.S. Oksal, Res. Chem. Intermed. (2015). https://doi.org/10.1007/s11164-013-1498-0

    Article  Google Scholar 

  14. B. Uysal, B.S. Oksal, J Por Mater. 22, 1053–1064 (2015). https://doi.org/10.1007/s10934-015-9980-2

    Article  CAS  Google Scholar 

  15. R. Anwander, O. Runte, J. Eppinger, G. Gerstberger, E. Herdtweck, M. Spiegler, J. Chem. Soc. Dalton Trans. (1998). https://doi.org/10.1039/A705608G

    Article  Google Scholar 

  16. S. O’Brien, J. Tudor, S. Barlow, M.J. Drewitt, S.J. Heyes, D. O’Hare, Chem. Commun. (1997). https://doi.org/10.1039/a700176b

    Article  Google Scholar 

  17. R. Kumari, S.S. Narvi, P.K. Dutta, J. Indian Chem. Soc. (2021). https://doi.org/10.1016/j.jics.2021.100108

    Article  Google Scholar 

  18. C.T. Kresege, M.E. Leonowicz, W.J. Roth, J.C. Vartadi, J.S. Beck, Nature (1992). https://doi.org/10.1038/359710a0

    Article  Google Scholar 

  19. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresege, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. (1992). https://doi.org/10.1021/ja00053a020

    Article  Google Scholar 

  20. P. Leyrit, C. McGill, F. Quignard, A. Choplin, J. Mol. Catal. A Chem. 112(3), 395–400 (1996). https://doi.org/10.1016/1381-1169(96)00234-8

    Article  CAS  Google Scholar 

  21. B. Uysal, B.S. Oksal, Appl. Catal. A: Gen. (2012). https://doi.org/10.1016/j.apcata.2012.06.004

    Article  Google Scholar 

  22. R. Anwander, C. Palm, G. Gerstberge, O. Groeger, G. Engelhardt, Chem. Comm. (1998). https://doi.org/10.1039/A802996B

    Article  Google Scholar 

  23. K. Inada, M. Shibagaki, Y. Nakanishi, H. Matsushita, Chem. Lett. (1993). https://doi.org/10.1246/cl.1993.1795

    Article  Google Scholar 

  24. F. Quignard, O. Graziani, A. Choplin, Appl. Catal. A: Gen. (1999). https://doi.org/10.1016/S0926-860X(98)00421-9

    Article  Google Scholar 

  25. S. Mang, A.I. Cooper, M.E. Colclough, N. Chauhan, A.B. Holmes, Macromolecules (2000). https://doi.org/10.1021/ma991162m

    Article  Google Scholar 

  26. J.E. Audia, L. Boisvert, A.D. Patten, A. Villalobos, S.J. Danishefsky, J. Org Chem. (1989). https://doi.org/10.1021/jo00276a043

    Article  Google Scholar 

  27. M. Polla, T. Frejd, Tetrahedron (1991). https://doi.org/10.1016/S0040-4020(01)86539-X

    Article  Google Scholar 

  28. J. Tong, W. Wang, L. Su, Q. Li, F. Liu, Catal. Sci. Technol. (2017). https://doi.org/10.1039/C6CY01554A

    Article  Google Scholar 

  29. Q.X. Luo, M. Ji, S.E. Park, C. Hao, Y.Q. Li, RSC Adv. (2016). https://doi.org/10.1039/C6RA02077A

    Article  Google Scholar 

  30. F. Scalambra, B. López-Sanchez, A. Romerosa, Dalton Trans. (2018). https://doi.org/10.1039/C8DT02560F

    Article  Google Scholar 

  31. B. Uysal, B.S. Oksal, Res. Chem. Intermed. (2015). https://doi.org/10.1007/s11164-013-1498-0

    Article  Google Scholar 

  32. S.H. Liu, S. Jaenicke, G.K. Chuah, J. Catal. (2002). https://doi.org/10.1006/jcat.2001.3480

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our Scientific and Technical Research Council of Turkey (TUBITAK) for financial support of under Grant No. 113Z389. I thanks to Prof. Dr. Birsen S. Oksal for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Uysal Karatas.

Ethics declarations

Conflict of interest

There is no Conflict of interest for the research paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uysal Karatas, B. New reusable heterogeneous catalyst in the MPV reduction in cyclohexenones: moderate one-pot synthesis of cyclohexenols (effect of methyl substituents). J IRAN CHEM SOC 20, 29–36 (2023). https://doi.org/10.1007/s13738-022-02698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02698-2

Keywords

Navigation