Skip to main content
Log in

Crystal structure, Hirshfeld surface analysis, computational and antifungal studies of dihydropyrimidines on the basis of salicylaldehyde derivatives

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We herein reported the synthesis of dihydropyrimidines 1 and 2 on the basis of nitro and brominated salicylaldehyde derivatives by Biginelli reaction in microwave conditions in the presence of cheap low toxic copper triflate. The structures of both compounds were investigated by the X-ray single-crystal diffraction method. The presence of non-covalent interactions and their impact on crystal structure was determined. In addition, the conformation of the dihydropyrimidine ring was also studied. In order to understand the molecular interactions in their structure, the Hirshfeld surface and contacts enrichment analyses were performed. Moreover, the biological activity of synthesized compounds was also investigated against Candida albicans and Aspergillus niger fungi. Finally, computational studies of the related compounds were performed at M062X/6-31G(d) level in the water and molecular docking calculations were done against the thymidylate kinase of Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Biginelli, The urea-aldehyde derivatives of acetoacetic esters. Gazz. Chim. Ital 23, 360–416 (1893)

    Google Scholar 

  2. C.O. Kappe, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc Chem Res 33(12), 879–888 (2000). https://doi.org/10.1021/ar000048h

    Article  CAS  Google Scholar 

  3. Li S, et al. Dihydropyrimidine compounds and their uses in preparation of medicaments for treating and preventing antiviral diseases. U.S. Patent No. 8,168,642. 2012.

  4. T. Watabe, K. Ogura, T. Nishiyama, Molecular toxicological mechanism of the lethal interactions of the new antiviral drug, sorivudine, with 5-fluorouracil prodrugs and genetic deficiency of dihydropyrimidine dehydrogenase. Yakugaku zasshi J. Pharm. Soc. Jpn. 122(8), 527 (2002). https://doi.org/10.1248/yakushi.122.527

    Article  CAS  Google Scholar 

  5. F.M. Awadallah et al., Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity. Eur. J. Med. Chem. 70, 273–279 (2013). https://doi.org/10.1016/j.ejmech.2013.10.003

    Article  CAS  Google Scholar 

  6. S. Oie et al., Alteration of dihydropyrimidine dehydrogenase expression by IFN-α affects the antiproliferative effects of 5-fluorouracil in human hepatocellular carcinoma cells. Mol. Cancer Ther. 6(8), 2310–2318 (2007). https://doi.org/10.1158/1535-7163.MCT-06-0281

    Article  CAS  Google Scholar 

  7. E. Klein et al., New chemical tools for investigating human mitotic kinesin Eg5. Bioorg. Med. Chem. 15(19), 6474–6488 (2007). https://doi.org/10.1016/j.bmc.2007.06.016

    Article  CAS  Google Scholar 

  8. H.Y.K. Kaan et al., Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J. Med. Chem. 53(15), 5676–5683 (2010). https://doi.org/10.1021/jm100421n

    Article  CAS  Google Scholar 

  9. C.M. Wright et al., Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorg. Med. Chem. 16(6), 3291–3301 (2008). https://doi.org/10.1016/j.bmc.2007.12.014

    Article  CAS  Google Scholar 

  10. O.C. Agbaje et al., Synthesis and in vitro cytotoxicity evaluation of some fluorinated hexahydropyrimidine derivatives. Bioorg. Med. Chem. Lett. 21(3), 989–992 (2011). https://doi.org/10.1016/j.bmcl.2010.12.022

    Article  CAS  Google Scholar 

  11. B.R.P. Kumar et al., Novel Biginelli dihydropyrimidines with potential anticancer activity: a parallel synthesis and CoMSIA study. Eur. J. Med. Chem. 44(10), 4192–4198 (2009). https://doi.org/10.1016/j.ejmech.2009.05.014

    Article  CAS  Google Scholar 

  12. D.A. Ibrahim, A.M. El-Metwally, Design, synthesis, and biological evaluation of novel pyrimidine derivatives as CDK2 inhibitors. Eur. J. Med. Chem. 45(3), 1158–1166 (2010). https://doi.org/10.1016/j.ejmech.2009.12.026

    Article  CAS  Google Scholar 

  13. A. Wang et al., New magnetic nanocomposites of ZrO2–Al2O3–Fe3O4 as green solid acid catalysts in organic reactions. Catal. Sci. Technol. 4(1), 71–80 (2014). https://doi.org/10.1039/C3CY00572K

    Article  Google Scholar 

  14. B.K. Ghosh, S. Hazra, N.N. Ghosh, Synthesis of Cu@CF@SBA15: a versatile catalysts for (i) reduction of dyes, trifluralin, synthesis of (ii) DHPMs by Biginelli reaction and (iii) 1,2,3-triazole derivatives by ‘Click reaction.’ Catal. Commun. 80, 44–48 (2016). https://doi.org/10.1016/j.catcom.2016.03.016

    Article  CAS  Google Scholar 

  15. N. October et al., Reversed chloroquines based on the 3,4-dihydropyrimidin-2(1H)-one scaffold: synthesis and evaluation for antimalarial, β-haematin inhibition, and cytotoxic activity. ChemMedChem 3(11), 1649–1653 (2008). https://doi.org/10.1002/cmdc.200800172

    Article  CAS  Google Scholar 

  16. S. Fatima et al., One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio-evaluation as antimalarial and anti-HIV agents. Eur. J. Med. Chem. 55, 195–204 (2012). https://doi.org/10.1016/j.ejmech.2012.07.018

    Article  CAS  Google Scholar 

  17. H. Kaur et al., Primaquine–pyrimidine hybrids: synthesis and dual-stage antiplasmodial activity. Eur. J. Med. Chem. 101, 266–273 (2015). https://doi.org/10.1016/j.ejmech.2015.06.045

    Article  CAS  Google Scholar 

  18. T.N. Akhaja, J.P. Raval, 1,3-Dihydro-2H-indol-2-ones derivatives: design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur. J. Med. Chem. 46(11), 5573–5579 (2011). https://doi.org/10.1016/j.ejmech.2011.09.023

    Article  CAS  Google Scholar 

  19. R.K. Yadlapalli et al., Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett. 22(8), 2708–2711 (2012). https://doi.org/10.1016/j.bmcl.2012.02.101

    Article  CAS  Google Scholar 

  20. S.N. Mokale et al., Synthesis and anti-inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives. Bioorg. Med. Chem. Lett. 20(15), 4424–4426 (2010). https://doi.org/10.1016/j.bmcl.2010.06.058

    Article  CAS  Google Scholar 

  21. S.S. Bahekar, D.B. Shinde, Synthesis and anti-inflammatory activity of some [4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives. Bioorg. Med. Chem. Lett. 14(7), 1733–1736 (2004). https://doi.org/10.1016/j.bmcl.2004.01.039

    Article  CAS  Google Scholar 

  22. B.A. Marathwada, Synthesis and anti-inflammatory activity of some [2-amino-6-(4-substituted aryl)-4-(4-substituted phenyl)-1, 6-dihydropyrimidine-5-yl]-acetic acid derivatives. Acta Pharm 53, 223–229 (2003)

    Google Scholar 

  23. A.R. Trivedi et al., Novel dihydropyrimidines as a potential new class of antitubercular agents. Bioorg. Med. Chem. Lett. 20(20), 6100–6102 (2010). https://doi.org/10.1016/j.bmcl.2010.08.046

    Article  CAS  Google Scholar 

  24. A.M. Maharramov et al., Synthesis, investigation of the new derivatives of dihydropyrimidines and determination of their biological activity. J. Mol. Struct. 1141, 39–43 (2017). https://doi.org/10.1016/j.molstruc.2017.03.084

    Article  CAS  Google Scholar 

  25. U. Rashid et al., Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem. 115, 230–244 (2016). https://doi.org/10.1016/j.ejmech.2016.03.022

    Article  CAS  Google Scholar 

  26. K.S. Atwal et al., Dihydropyrimidine calcium channel blockers: 2-heterosubstituted 4-aryl-1, 4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J. Med. Chem. 33(5), 1510–1515 (1990). https://doi.org/10.1021/jm00167a035

    Article  CAS  Google Scholar 

  27. I.S. Zorkun et al., Synthesis of 4-aryl-3, 4-dihydropyrimidin-2 (1H)-thione derivatives as potential calcium channel blockers. Bioorg. Med. Chem. 14(24), 8582–8589 (2006). https://doi.org/10.1016/j.bmc.2006.08.031

    Article  CAS  Google Scholar 

  28. R.V. Chikhale et al., Synthesis and pharmacological investigation of 3-(substituted 1-phenylethanone)-4-(substituted phenyl)-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylates. Eur. J. Med. Chem. 44(9), 3645–3653 (2009). https://doi.org/10.1016/j.ejmech.2009.02.021

    Article  CAS  Google Scholar 

  29. R.W. Lewis et al., Dihydropyrimidinone positive modulation of δ-subunit-containing γ-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant. Biochemistry 49(23), 4841–4851 (2010). https://doi.org/10.1021/bi100119t

    Article  CAS  Google Scholar 

  30. L. Figueroa-Valverde et al., Activity induced by two steroid-dihydropyrimidine derivatives on glucose levels in a diabetic rat model. Relationship between descriptors logP and π and its antidiabetic activity. Int. J. PharmTech Res. 2, 2075–2080 (2010)

    CAS  Google Scholar 

  31. A.D. Patel et al., Molecular docking, in-silico ADMET study and development of 1,6-dihydropyrimidine derivative as protein tyrosine phosphatase inhibitor: an approach to design and develop antidiabetic agents. Curr. Comput. Aided Drug Des. 14(4), 349–362 (2018). https://doi.org/10.2174/1573409914666180426125721

    Article  CAS  Google Scholar 

  32. A.D. Patil et al., Novel alkaloids from the sponge Batzella sp.: inhibitors of HIV gp120-human CD4 binding. J. Org. Chem. 60(5), 1182–1188 (1995). https://doi.org/10.1021/jo00110a021

    Article  CAS  Google Scholar 

  33. K.B. Mehtaa, R.K.P.H.S. Joshic, In silico study of novel dihydropyrimidines against anti cancer, anti tuberculosis, anti HIV and anti malarial activity. Int. J. Scient. Eng. Res 4, 1–8 (2013)

    Google Scholar 

  34. S. Terracciano et al., Structural insights for the optimization of dihydropyrimidin-2 (1H)-one based mPGES-1 inhibitors. ACS Med. Chem. Lett. 6(2), 187–191 (2015). https://doi.org/10.1021/ml500433j

    Article  CAS  Google Scholar 

  35. B.K. Singh et al., Synthesis of 2-sulfanyl-6-methyl-1, 4-dihydropyrimidines as a new class of antifilarial agents. Eur. J. Med. Chem. 43(12), 2717–2723 (2008). https://doi.org/10.1016/j.ejmech.2008.01.038

    Article  CAS  Google Scholar 

  36. J.C. Barrow et al., In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective α1A receptor antagonists for the treatment of benign prostatic hyperplasia. J. Med. Chem. 43(14), 2703–2718 (2000). https://doi.org/10.1021/jm990612y

    Article  CAS  Google Scholar 

  37. X. Zhu et al., 2,4-Diaryl-4,6,7,8-tetrahydroquinazolin-5 (1H)-one derivatives as anti-HBV agents targeting at capsid assembly. Bioorg. Med. Chem. Lett. 20(1), 299–301 (2010). https://doi.org/10.1016/j.bmcl.2009.10.119

    Article  CAS  Google Scholar 

  38. G.C. Rovnyak, K.S. Atwal, A. Hedberg, S.D. Kimball, S. Moreland, J.Z. Gougoutas, B.C. O’Reilly, J. Schwartz, M.F. Malley, Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem. 35(17), 3254–3263 (1992). https://doi.org/10.1021/jm00095a023

    Article  CAS  Google Scholar 

  39. H.J. Finlay et al., Discovery of ((S)-5-(Methoxymethyl)-7-(1-methyl-1 H-indol-2-yl)-2-(trifluoromethyl)-4, 7-dihydropyrazolo [1, 5-a] pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl) pyrrolidin-1-yl) methanone As a Potent and Selective IKur Inhibitor. J. Med. Chem. 55(7), 3036–3048 (2012). https://doi.org/10.1021/jm201386u

    Article  CAS  Google Scholar 

  40. J. Lloyd et al., Pyrrolidine amides of pyrazolodihydropyrimidines as potent and selective KV1.5 blockers. Bioorg Med Chem Lett 20(4), 1436–1439 (2010). https://doi.org/10.1016/j.bmcl.2009.12.085

    Article  CAS  Google Scholar 

  41. J. Lloyd et al., Dihydropyrazolopyrimidines containing benzimidazoles as KV1.5 potassium channel antagonists. Bioorg Med Chem Lett 19(18), 5469–5473 (2009). https://doi.org/10.1016/j.bmcl.2009.07.083

    Article  CAS  Google Scholar 

  42. W.C. Wong et al., Design and synthesis of novel α1a adrenoceptor-selective antagonists. 4. Structure—activity relationship in the dihydropyrimidine series. J Med Chem 42(23), 4804–4813 (1999). https://doi.org/10.1021/jm9902032

    Article  CAS  Google Scholar 

  43. A.E. Huseynzada et al., Synthesis, crystal structure and antibacterial properties of 6-methyl-2-oxo-4-(quinolin-2-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate. J. Mol. Struct. 1219, 128581 (2020). https://doi.org/10.1016/j.molstruc.2020.128581

    Article  CAS  Google Scholar 

  44. A.E. Huseynzada et al., Synthesis, crystal structure and antibacterial studies of 2,4,6-trimetoxybenzaldehyde based dihydropyrimidine derivatives. J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.130678

    Article  Google Scholar 

  45. A.E. Huseynzada et al., Synthesis, crystal structure and antibacterial studies of dihydropyrimidines and their regioselectively oxidized products. RSC Adv. 11(11), 6312–6329 (2021). https://doi.org/10.1039/D0RA10255E

    Article  CAS  Google Scholar 

  46. K. Dutta et al., Synergistic interplay of covalent and non-covalent interactions in reactive polymer nanoassembly facilitates intracellular delivery of antibodies. Angew. Chem. Int. Ed. 60(4), 1821–1830 (2021). https://doi.org/10.1002/anie.202010412

    Article  CAS  Google Scholar 

  47. G.M. Sheldrick, SHELXTL V5.1, Software reference manual (Bruker AXS Inc, Madison, 1997), pp.1–250

    Google Scholar 

  48. C.F. Mackenzie et al., CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 4(5), 575–587 (2017). https://doi.org/10.1107/S205225251700848X

    Article  CAS  Google Scholar 

  49. B. Guillot, E. Enrique, L. Huder, C. Jelsch, MoProViewer: a tool to study proteins from a charge density science perspective. Acta Cryst. A70, C279 (2014)

    Google Scholar 

  50. C. Jelsch, K. Ejsmont, L. Huder, The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 1(2), 119–128 (2014). https://doi.org/10.1107/S2052252514003327

    Article  CAS  Google Scholar 

  51. J.G. Vincent, H.W. Vincent, J. Morton, Filter paper disc modification of the oxford cup penicillin determination. Proc. Soc. Exp. Biol. Med. 55(3), 162–164 (1944). https://doi.org/10.3181/00379727-55-14502

    Article  CAS  Google Scholar 

  52. A.A. Ardakani et al., Synthesis, characterization, crystal structures and antibacterial activities of some Schiff bases with N2O2 donor sets. J. Iran. Chem. Soc. 15(7), 1495–1504 (2018). https://doi.org/10.1016/j.ica.2021.120677

    Article  CAS  Google Scholar 

  53. H. Kargar et al., Nickel (II), copper (II) and zinc (II) complexes containing symmetrical Tetradentate Schiff base ligand derived from 3, 5-diiodosalicylaldehyde: synthesis, characterization, crystal structure and antimicrobial activity. J. Iran. Chem. Soc. 18(9), 2493–2503 (2021). https://doi.org/10.1080/00958972.2021.1900831

    Article  CAS  Google Scholar 

  54. A. Sahraei et al., Synthesis, characterization, crystal structures and biological activities of eight-coordinate zirconium (IV) Schiff base complexes. Transition Met. Chem. 42(6), 483–489 (2017). https://doi.org/10.1016/j.molstruc.2017.08.022

    Article  CAS  Google Scholar 

  55. A. Sahraei et al., Distorted square-antiprism geometry of new zirconium (IV) Schiff base complexes: synthesis, spectral characterization, crystal structure and investigation of biological properties. J. Mol. Struct. 1149, 576–584 (2017). https://doi.org/10.1007/s11243-017-0152-x

    Article  CAS  Google Scholar 

  56. H. Kargar et al., Some new Cu(II) complexes containing O, N-donor Schiff base ligands derived from 4-aminoantipyrine: synthesis, characterization, crystal structure and substitution effect on antimicrobial activity. J. Coord. Chem. 74(9–10), 1534–1549 (2021). https://doi.org/10.1007/s13738-021-02207-x

    Article  CAS  Google Scholar 

  57. H. Kargar et al., Binuclear Zn(II) Schiff base complexes: synthesis, spectral characterization, theoretical studies and antimicrobial investigations. Inorg. Chim. Acta 530, 120677 (2022). https://doi.org/10.1007/s13738-018-1347-6

    Article  CAS  Google Scholar 

  58. S.K. Nayak et al., Effect of substitution on molecular conformation and packing features in a series of aryl substituted ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates. CrystEngComm 12(4), 1205–1216 (2010). https://doi.org/10.1039/B919648J

    Article  CAS  Google Scholar 

  59. S. Chitra et al., 5-Acetyl-4-(4-methoxyphenyl)-6-methyl-3, 4-dihydropyrimidin-2 (1H)-one. Acta Crystallogr. Sect. E: Struct. Rep. Online 65(1), o23–o23 (2009). https://doi.org/10.1107/S1600536808040270

    Article  CAS  Google Scholar 

  60. D.T. Cremer, J.A. Pople, General definition of ring puckering coordinates. J. Am. Chem. Soc. 97(6), 1354–1358 (1975). https://doi.org/10.1021/ja00839a011

    Article  CAS  Google Scholar 

  61. O.V. Shishkin et al., Molecular structure and conformation flexibility of 2-oxo-and 2-thioxo-1,2,3,4-tetrahydropyrimidines and their derivatives. Russ. Chem. Bull. 46(11), 1838–1843 (1997). https://doi.org/10.1007/BF02503768

    Article  CAS  Google Scholar 

  62. H. Yuvaraj et al., Ethyl 4-(3-bromophenyl)-6-methyl-2-oxo-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylate. Acta Crystallogr. Sect. E: Struct. Rep. Online 66(12), o3325–o3325 (2010). https://doi.org/10.1107/S1600536810049019

    Article  CAS  Google Scholar 

  63. S. Bharanidharan et al., Crystal structure of ethyl 6-(chloromethyl)-4-(4-chlorophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Acta Crystallogr. Sect. E: Struct. Rep. Online 70(11), o1185–o1186 (2014). https://doi.org/10.1107/S1600536814023046

    Article  CAS  Google Scholar 

  64. H. Kargar et al., Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of novel dioxovanadium (V) complex with aminobenzohydrazone Schiff base ligand: an experimental and theoretical approach. Inorg. Chim. Acta 526, 120535 (2021). https://doi.org/10.1016/j.ica.2021.120535

    Article  CAS  Google Scholar 

  65. H. Kargar et al., Zn(II) complexes containing O, N, N, O-donor Schiff base ligands: synthesis, crystal structures, spectral investigations, biological activities, theoretical calculations and substitution effect on structures. J. Coord. Chem. 74(16), 2720–2740 (2021). https://doi.org/10.1080/00958972.2021.1990271

    Article  CAS  Google Scholar 

  66. H. Kargar et al., Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of a dioxidomolybdenum complex with aminosalicyl-hydrazone Schiff base ligand: an experimental and theoretical approach. Polyhedron 208, 115428 (2021). https://doi.org/10.1016/j.poly.2021.115428

    Article  CAS  Google Scholar 

  67. H. Kargar et al., Titanium(IV) complex containing ONO-tridentate Schiff base ligand: synthesis, crystal structure determination, Hirshfeld surface analysis, spectral characterization, theoretical and computational studies. J. Mol. Struct. 1241, 130653 (2021). https://doi.org/10.1016/j.molstruc.2021.130653

    Article  CAS  Google Scholar 

  68. K. Hadi et al., Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity of novel oxovanadium and dioxomolybdenum complexes with ONO tridentate Schiff base ligand. Polyhedron 202, 115194 (2021). https://doi.org/10.1016/j.poly.2021.115194

    Article  CAS  Google Scholar 

  69. M.J. Turner et al., Visualisation and characterisation of voids in crystalline materials. CrystEngComm 13(6), 1804–1813 (2011). https://doi.org/10.1039/C0CE00683A

    Article  CAS  Google Scholar 

  70. H. Kargar et al., Synthesis, crystal structure determination, Hirshfeld surface analysis, spectral characterization, theoretical and computational studies of titanium (IV) Schiff base complex. J. Coord. Chem. 74(16), 2682–2700 (2021). https://doi.org/10.1080/00958972.2021.1972984

    Article  CAS  Google Scholar 

  71. H. Kargar et al., Experimental and theoretical studies of new dioxomolybdenum complex: synthesis, characterization and application as an efficient homogeneous catalyst for the selective sulfoxidation. Inorg. Chim. Acta 527, 120568 (2021). https://doi.org/10.1016/j.ica.2021.120568

    Article  CAS  Google Scholar 

  72. M. Fallah-Mehrjardi et al., Symmetrical Pd(II) and Ni(II) Schiff base complexes: synthesis, crystal structure determination, spectral characterization, and theoretical studies. J. Mol. Struct. 1251, 132037 (2022). https://doi.org/10.1016/j.molstruc.2021.132037

    Article  CAS  Google Scholar 

  73. H. Kargar et al., Synthesis, characterization, SC-XRD, HSA and DFT study of a novel copper(I) iodide complex with 2-(thiophen-2-yl)-4,5-dihydro-1H-imidazole ligand: an experimental and theoretical approach. J. Mol. Struct. 1253, 132264 (2022). https://doi.org/10.1016/j.molstruc.2021.132264

    Article  CAS  Google Scholar 

  74. H. Kargar et al., Novel copper(II) and zinc(II) complexes of halogenated bidentate N,O-donor Schiff base ligands: synthesis, characterization, crystal structures, DNA binding, molecular docking, DFT and TD-DFT computational studies. Inorg. Chim. Acta 514, 120004 (2021). https://doi.org/10.1016/j.ica.2020.120004

    Article  CAS  Google Scholar 

  75. H. Kargar et al., Synthesis, characterization, crystal structures, DFT, TD-DFT, molecular docking and DNA binding studies of novel copper (II) and zinc (II) complexes bearing halogenated bidentate N,O-donor Schiff base ligands. Polyhedron 195, 114988 (2021). https://doi.org/10.1016/j.poly.2020.114988

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

Funding

This work was supported by the Erasmus + overseas/ICM KA107 programme, Science Development Foundation under the President of the Republic of Azerbaijan and TUBITAK in the frames of the project number EIF-BGM-5-AZTURK-1/2018-2/02/4-M-02 and the Scientific Research Project Fund of Sivas Cumhuriyet University under Project Number RGD-020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alakbar Huseynzada.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1077 KB)

Supplementary file2 (ZIP 455 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huseynzada, A., Jelsch, C., Akhundzada, H.V. et al. Crystal structure, Hirshfeld surface analysis, computational and antifungal studies of dihydropyrimidines on the basis of salicylaldehyde derivatives. J IRAN CHEM SOC 20, 109–123 (2023). https://doi.org/10.1007/s13738-022-02659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02659-9

Keywords

Navigation