Skip to main content
Log in

Response surface methodology optimized adsorptive removal of the lead(II) ion from aqueous solution using reduced graphene oxide/zeolitic imidazolate framework-67

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The effective adsorption of lead from wastewater has become a significant problem from both environmental and biological viewpoints. In this study, a composite of reduced graphene oxide (RGO) with zeolitic imidazolate framework-67(ZIF-67) was prepared as adsorbent to remove the Pb(II) ions from aqueous solutions. The composite was characterized by various techniques such as SEM, TEM, FTIR, XRD, BET and TGA. The important factors including sorbent weight, contact time, initial lead concentration, pH and temperature were optimized by central composite design (CCD) of response surface methodology (RSM). The maximum adsorption of 99.2% was achieved at the initial lead concentration of 87.5 ppm, adsorbent weight of 38.68 mg, contact time of 46 min and temperature of 47 °C. Different kinetic and isotherm models were evaluated to describe adsorption data. The results showed that kinetic data have better agreement with the pseudo-second-order kinetic model. From isotherm studies, the experimental results exhibited the best matching with the Langmuir isotherm. The outcomes of thermodynamic investigations confirmed that the adsorption process is endothermic and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

References

  1. Q. Xu, Y. Wang, L. Jin, M. Qin, Adsorption of Cu(II), Pb(II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater. 339, 91 (2017)

    Article  CAS  Google Scholar 

  2. N. Wang, R.N. Jin, A.M. Omer, X.K. Ouyang, Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies. Int. Biol. Macromol. 102, 232 (2017)

    Article  CAS  Google Scholar 

  3. M.S. Samuel, S.S. Shah, J. Bhattacharya, K. Subramaniam, N.D. Pradeep Singh, Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies. Int. J. Biol. Macromol. 115, 1142 (2018)

    Article  CAS  Google Scholar 

  4. W. Peng, H. Li, Y. Liu, S. Song, Comparison of Pb(II) adsorption onto graphene oxide prepared from natural graphites: Diagramming the Pb(II) adsorption sites. Appl. Surf. Sci. 364, 620 (2016)

    Article  CAS  Google Scholar 

  5. H. Ren, Z. Gao, D. Wu, J. Jiang, Y. Sun, C. Luo, Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydr. Polym. 137, 402 (2016)

    Article  CAS  Google Scholar 

  6. X. Liang, G. Wei, J. Xiong, F. Tan, H. He, C. Qu, H. Yin, J. Zhu, R. Zhu, Z. Qin, J. Zhang, Adsorption isotherm, mechanism, and geometry of Pb(II) on magnetites substituted with transition metals. Chem. Geol. 470, 132 (2017)

    Article  CAS  Google Scholar 

  7. L. Jiang, F. Chai, Q. Chen, Soft magnetic nanocomposite microgels by in-situ crosslinking of poly acrylic acid onto superparamagnetic magnetite nanoparticles and their applications for the removal of Pb(II) ion. Eur. Polym. J. 89, 468 (2017)

    Article  CAS  Google Scholar 

  8. W. Tanan, S. Panpinit, S. Saengsuwan, Comparison of microwave-assisted and thermal-heated synthesis of P (HEMA-co-AM)/PVA interpenetrating polymer network (IPN) hydrogels for Pb(II) removal from aqueous solution: Characterization, adsorption and kinetic study. Eur. Poly. J. 143, 110193 (2021)

    Article  CAS  Google Scholar 

  9. Y. Chen, J. Tang, S. Wang, L. Zhang, W. Sun, Bimetallic coordination polymer for highly selective removal of Pb(II): Activation energy, isosteric heat of adsorption and adsorption mechanism. Chem. Eng. J. 425, 131474 (2021)

    Article  CAS  Google Scholar 

  10. Y. He, P. Wu, W. Xiao, G. Li, J. Yi, Y. He, C. Chen, P. Ding, I.Y. Duan, Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: adsorption kinetics and mechanisms. PLoS ONE 14, e0213377 (2020)

    Article  Google Scholar 

  11. Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen, Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation adsorptioncapacity, kinetic and isotherm studies. Appl. Surf. Sci. 293, 160 (2014)

    Article  CAS  Google Scholar 

  12. S. Luo, X. Xu, G. Zhou, C. Liu, Y. Tang, Y. Liu, Amino siloxane oligomer-linkedgraphene oxide as an efficient adsorbent for removal of Pb(II) from waste- water. J. Hazard. Mater. 274, 145 (2014)

    Article  CAS  Google Scholar 

  13. I.A.H. Hamza, B.S. Martincigh, J.C. Ngila, V.O. Nyamori, Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Phys. Chem. Earth. 66, 157 (2013)

    Article  Google Scholar 

  14. Y. Ma, Z. Deng, Z. Li, Q. Lin, Y. Wu, W. Dou, Adsorption characteristics and mechanism for K2Ti4O9 whiskers removal of Pb(II), Cd(II), and Cu(II) cations in wastewater. J. Environ. Chem. Eng. 9, 106236 (2021)

    Article  CAS  Google Scholar 

  15. R. Abazari, A.R. Mahjoub, J. Shariati, Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution. J. Hazard. Mater. 366, 439 (2019)

    Article  CAS  Google Scholar 

  16. X. Wei, Y. Chai, N. Liu, S. Qiao, Y. Fu, S. Chong, ZIF67@MoO3 NSs@NF composite electrocatalysts reinforced by chemical bonds and oxygen vacancy for efficient oxygen evolution reaction and overall water-splitting. Int. J. Hydrog. Energy. 47, 9606 (2022)

    Article  CAS  Google Scholar 

  17. Y. Huang, X. Zeng, L. Guo, J. Lan, L. Zhang, D. Cao, Heavy metal ion removal ofwastewater by zeolite-imidazolate frameworks. Sep. Pur. 194, 462 (2018)

    Article  CAS  Google Scholar 

  18. P.Y. Lee, L.Y. Lin, Investigating energy storage ability of ZIF67-derived perovskite fluoride via tuning ammonium fluoride amounts. J. Alloys Compd. 892, 162191 (2021)

    Article  Google Scholar 

  19. M. Jian, B. Liu, G. Zhang, R. Liu, X. Zhang, Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf. A. 465, 67 (2015)

    Article  CAS  Google Scholar 

  20. C. Wang, R. Yang, H. Wang, Synthesis of ZIF-8/Fly ash composite for adsorption of Cu2+, Zn2+ and Ni2+ from aqueous solutions. Materials 13, 214 (2020)

    Article  CAS  Google Scholar 

  21. Y. Zhou, Y. Pan, W. Liu, L. Zhang, Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals. Chem. Lett. 44, 758 (2015)

    Article  Google Scholar 

  22. G.K. Ramesha, A.V. Kumara, H.B. Muralidhara, S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid. Interface. Sci. 361, 270 (2011)

    Article  CAS  Google Scholar 

  23. A.K. Mishra, S. Ramaprabhu, Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282, 39 (2011)

    Article  CAS  Google Scholar 

  24. C. Bulin, Z. Ma, T. Guo, B. Li, Y. Zhang, B. Zhang, R. Xing, X. Ge, Magnetic graphene oxide nanocomposite: One-pot preparation, adsorption performance and mechanism for aqueous Mn(II) and Zn(II). J. Phys. Chem. Solids 156, 110130 (2021)

    Article  CAS  Google Scholar 

  25. G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, Y. Huang, X. Wang, Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40, 10945 (2011)

    Article  CAS  Google Scholar 

  26. M. Zhao, A.T. Reda, D. Zhang, Reduced graphene oxide/ZIF-67 aerogel composite material for uranium adsorption in aqueous solutions. ACS Omega 5, 8012 (2020)

    Article  CAS  Google Scholar 

  27. M. Muschi, C. Serre, Progress and challenges of graphene oxide/metal-organic composites. Coord. Chem. Rev. 387, 262 (2019)

    Article  CAS  Google Scholar 

  28. S. Cao, T. Tang, C. Xi, Z. Chen, Fabricating magnetic GO/ZIF-8 nanocomposite for amphetamine adsorption from water: Capability and mechanism. Chem. Eng. J. 422, 130096 (2021)

    Article  CAS  Google Scholar 

  29. X. Liu, C. Wang, Q. Wu, Z. Wang, Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient adsorbent for enrichment of phenylurea herbicides. Anal. Chim. Acta. 870, 67 (2015)

    Article  CAS  Google Scholar 

  30. A.F. Gross, E. Sherman, J.J. Vajo, Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidazolate frameworks. Dalton Trans. 41, 5458 (2012)

    Article  CAS  Google Scholar 

  31. H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 279, 432 (2013)

    Article  CAS  Google Scholar 

  32. S. Gholamiyan, M. Hamzehloo, A. Farrokhnia, RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: Adsorption isotherm, kinetic modeling and thermodynamic studies. Sustain. Chem. Pharm. 17, 100309 (2020)

    Article  Google Scholar 

  33. M. Kaur, S. Kumari, P. Sharma, Removal of Pb(II) from aqueous solution using nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnol. Rep. 25, e00410 (2020)

    Article  Google Scholar 

  34. M.D. Yahya, K.S. Obayomi, M.B. Abdulkadir, Y.A. Iyaka, A.G. Olugbenga, Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Sci. Eng. 13, 202 (2020)

    Article  Google Scholar 

  35. Y. Priastomo, H.R. Setiawan, Y.S. Kurniawan, K. Ohto, Simultaneous removal of lead(II), chromium(III), and copper(II) heavy metal ions through an adsorption process using C-phenylcalix pyrogallolarene material. J. Environ. Chem. Eng. 8, 103971 (2020)

    Article  Google Scholar 

  36. Y. Chen, J. Tang, S. Wang, L. Zhang, Ninhydrin-functionalized chitosan for selective removal of Pb(II) ions: Characterization and adsorption performance. Int. J. Biol. Macromol. 177, 29 (2021)

    Article  CAS  Google Scholar 

  37. P. Maneechakr, S. Karnjanakom, Facile utilization of magnetic MnO2@Fe3O4@sulfonated carbon sphere for selective removal of hazardous Pb(II) ion with an excellent capacity: Adsorption behavior/isotherm/kinetic/thermodynamic studies. J. Environ. Chem. Eng. 9, 106191 (2021)

    Article  CAS  Google Scholar 

  38. H.J. Kim, J.M. Lee, J.H. Choi, D.H. Kim, G.S. Han, H.S. Jung, Synthesis and adsorption properties of gelatin-conjugated hematite (α-Fe2O3) nanoparticles for lead removal from wastewater. J. Hazard. Mater. 416, 125696 (2021)

    Article  CAS  Google Scholar 

  39. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 76, 332 (1998)

    Article  CAS  Google Scholar 

  40. G.F. Cerofolini, A model which allows for the Freundlich and the Dubinin- Radushkevich adsorption isotherms. Surf. Sci. 51, 333 (1975)

    Article  CAS  Google Scholar 

  41. M. Baghdadi, E. Ghaffari, B. Aminzadeh, Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: adsorption and sedimentation kinetic studies. J. Environ. Chem. Eng. 4, 3309 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MAH, AA performed writing-original draft, and done experiment. AAA performed writing–original draft, and supervision. SG contributed to conceptualization, review and editing.

Corresponding author

Correspondence to Ali Akbar Amooey.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.A., Amooey, A.A., Ghasemi, S. et al. Response surface methodology optimized adsorptive removal of the lead(II) ion from aqueous solution using reduced graphene oxide/zeolitic imidazolate framework-67. J IRAN CHEM SOC 20, 57–68 (2023). https://doi.org/10.1007/s13738-022-02643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02643-3

Keywords

Navigation