Skip to main content

Advertisement

Log in

Facile synthesis route and characterizations of zinc orthotitanate nanoparticles tested for dye-sensitized solar cell DSSC applications

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The mixture of Titanium-Zinc oxides is synthesized using two zinc sources for two synthesis methods. For the case of zinc nitrate in ethanol solution for sol–gel and zinc oxide for solid-state reaction, titanium dioxide was used in both preparations. A new preparation route was presented led to the preparation of Zn2TiO4 nanoparticles. The results of the materials mixture were confirmed by XRD and the particle size was determined by the Williamson–Hall method. The chemical and homogeneous nanoparticle sizes were confirmed by SEM and EDS analysis. SEM image of the fabricated photovoltaic cell was presented. The spectroscopy UV–V was used for determination of optical bandgap. The gap energies were found experimentally to be 2.93 eV and 3.22 eV for mixture contents of 55% and 38% of Zn2TiO4, respectively. The J-V test leads to the efficiency of DSSC based on mixture being slightly greater than based on ZnTiO3 commercial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shalin, S.K. Shukla, Appl. Solar Energy 52, 309–314 (2016)

    Article  Google Scholar 

  2. A. Rahmani, L. Remache, M. Guendouz, M.S. Aida, Z. Hebboul, Impact of the meso-PSi substrate on ZnO thin films deposited by spray pyrolysis technique for UV photodetectors. Appl. Phys. A 127, 396 (2021). https://doi.org/10.1007/s00339-021-04548-z

    Article  CAS  Google Scholar 

  3. O. Carp, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004)

    Article  CAS  Google Scholar 

  4. S.D. Janitabar, A.R. Mahjoub, A. Ghaemi, World Acad. Sci. Eng. Technol. 76, 524–525 (2011)

    Google Scholar 

  5. P.H. Borse, C.R. Cho, K.T. Lim, Y.J. Lee, J.S. Bae, E.D. Jeong, H.G. Kim, J. Korean Phys. Soc. 59, 65–70 (2011)

    Article  CAS  Google Scholar 

  6. J.S. Jang, P.H. Borse, J.S. Lee, K.T. Lim, O.S. Jung, E.D. Jeong, J.S. Bae, M.S. Won, H.G. Kim, Mater. Bull. Korean Chem. Soc. 30, 3021–3024 (2009)

    Article  CAS  Google Scholar 

  7. S.A.M. Hernandez, G.T. Delgado, R.C. Perez, J.M. Marin, M.G. Villarreal, O.J. Angel, Sol. Energy Mater. Sol. Cells 91, 1454–1457 (2007)

    Article  Google Scholar 

  8. M.A. Habib, M.T. Shahadat, N.M. Bahadur, I.M.I. Ismail, A.J. Mahmood, Int. Nano Lett. 3, 5–12 (2013)

    Article  Google Scholar 

  9. L. Nikam, R. Panmand, S. Kadam, S. Naik, B. Kale, New J. Chem. 39, 3821–3834 (2015)

    Article  CAS  Google Scholar 

  10. J. Yu, D. Li, L. Zhu, X. Xu, Application of ZnTiO3 in quantum-dot-sensitized solar cells and numerical simulations using first-principles theory. J. Alloys Compd. 681, 88–95 (2016)

    Article  CAS  Google Scholar 

  11. C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, N. Wang, Sci. Rep. 4, 4181–4185 (2014)

    Article  Google Scholar 

  12. N. Obradovic, N. Labus, T. Sreckovic, D. Minic, M.M. Ristic, Sci. Sinter. 37, 123–129 (2005)

    Article  CAS  Google Scholar 

  13. C. Wattanawikkam, W. Pecharapa, Sonochemical synthesis, characterization, and photocatalytic activity of perovskite ZnTiO3 nanopowders. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(10), 1663–1667 (2016)

    Article  Google Scholar 

  14. F. Meng, L. Cao, X. Song, Z. Sun, Chin. Opt. Lett. 7, 956–959 (2009)

    Article  CAS  Google Scholar 

  15. K. Sarkar, E.V. Braden, T. Froschl, N. Husing, P. Muller-Buschbaum, J. Mater. Chem. A2, 15008–15014 (2014)

    Article  Google Scholar 

  16. E. Hosono, S. Fujihara, M. Onuki, T. Kimura, J. Am. Ceram. Soc. 87, 1785–1788 (2004)

    Article  CAS  Google Scholar 

  17. B. Lokesh, S. Kaleemulla, N.M. Rao, Synthesis and characterization of zinc titanates by solid state reaction. Int. J. ChemTech Res 6, 1929 (2014)

    CAS  Google Scholar 

  18. T. Santhaveesuk, A. Gardchareon, D. Wongratanaphisan, S. Choopun, Ethanol sensing properties of Zn2TiO4 particles. Ceram. Int. 41, S809–S813 (2015)

    Article  CAS  Google Scholar 

  19. S. Manchala, L.R. Nagappagari, S.M. Venkatakrishnan, V. Shanker, Facile synthesis of noble-metal free polygonal Zn2TiO4 nanostructures for highly efficient photocatalytic hydrogen evolution under solar light irradiation. Int. J. Hydrog. Energy 43(29), 13145–13157 (2018)

    Article  CAS  Google Scholar 

  20. K.M. Girish, S.C. Prashantha, R. Naik, H. Nagabhushana, H.P. Nagaswarupa, H.B. Premakumar, K.A. Raju, Visible photon excited photoluminescence; photometric characteristics of a green light emitting Zn2TiO4: Tb3+ nanophosphor for wLEDs. Mater. Res. Express 3(7), 075015 (2016)

    Article  Google Scholar 

  21. G.G. Nascimento, N.A. Neto, L.M.P. Garcia, M.S. Li, E. Longo, C.A. Paskocimas, F.V. Motta, Effect of the Eu3+(x = 0, 1, 2 and 3 mol%) doped Zn2–x TiO4 and Zn2 Ti1–x O4 obtained by complex polymerization method: photoluminescent and photocatalytic properties. J. Mater. Sci. Mater. Electron. 30(24), 20979–20988 (2019)

    Article  CAS  Google Scholar 

  22. X.Y. Chen, X.Z. Wang, F.J. Liu, G.S. Zhang, X.J. Song, J. Tian, H.Z. Cui, Fabrication of porous Zn2TiO4–ZnO microtubes and analysis of their acetone gas sensing properties. Rare Met. 40(6), 1528–1535 (2021)

    Article  CAS  Google Scholar 

  23. C. Siriwong, S. Phanichphant, Flame-made single phase Zn2TiO4 nanoparticles. Mater. Lett. 65(12), 2007–2009 (2011)

    Article  CAS  Google Scholar 

  24. L.H. Anh, P.T. Phuong, N.T. Van, N. Tri, N.V. Minh, H.K. Ha, Preparation of Ag/Zn2TiO4 and its antibacterial activity on enamel tile. Chem. Pap. 73(4), 1019–1026 (2019)

    Article  CAS  Google Scholar 

  25. M. Surynek, L. Spanhel, L. Lapcik, J. Mrazek, Tuning the photocatalytic properties of sol–gel-derived single, coupled, and alloyed ZnO–TiO2 nanoparticles. Res. Chem. Intermed. 45(8), 4193–4204 (2019)

    Article  CAS  Google Scholar 

  26. J. Mrázek, L. Spanhel, G. Chadeyron, V. Matejec, Evolution and Eu3+ doping of sol−gel derived ternary ZnxTiyOz-nanocrystals. J. Phys. Chem. C 114(7), 2843–2852 (2010)

    Article  Google Scholar 

  27. W. Hall, X-ray line broadening in metals. Proc. Phys. Soc. Sect. 62, 741–743 (1949). https://doi.org/10.1088/0370-1298/62/11/110

    Article  Google Scholar 

  28. A. Kumar, A. Mandal, A.R. Dixit, A. Kumar, Das performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of Inconel 825. Mater. Manuf. Process. 33(9), 986–995 (2018). https://doi.org/10.1080/10426914.2017.1376081

    Article  CAS  Google Scholar 

  29. M. Karimi-Nazarabad, H. Ahmadzadeh, E.K. Goharshadi, Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Sol. Energy 227, 426–437 (2021). https://doi.org/10.1016/j.jelechem.2021.115933

    Article  CAS  Google Scholar 

  30. M. Karimi-Nazarabad, E.K. Goharshadi, Decoration of graphene oxide as a cocatalyst on Bi doped g-C3N4 photoanode for efficient solar water splitting. J. Electroanal. Chem. 904, 115933 (2022). https://doi.org/10.1016/j.solener.2021.09.028

    Article  CAS  Google Scholar 

  31. M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4(2), 145–153 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  32. M.A. Green, Solar cell fill factors: general graph and empirical expressions. Solid-State Electron. 24, 788–789 (1981)

    Article  CAS  Google Scholar 

  33. R. Tholkappiyan, K. Vishista, Synthesis and characterization of barium zinc ferrite nanoparticles: working electrode for dye sensitized solar cell applications. Sol. Energy 106, 118–128 (2014). https://doi.org/10.1016/j.solener.2014.02.003

    Article  CAS  Google Scholar 

  34. H.A. Deepa, G.M. Madhu, V. Venkatesham, Performance evaluation of DSSC’s fabricated employing TiO2 and TiO2-ZnO nanocomposite as the photoanodes. Mater. Today Proc. 46, 4579–4586 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Draoui sincerely thanks Professor L. H. Omari, LPMMAT, Faculty of Sciences, Ain-Chock, University of Hassan II, Casablanca, Morocco, for the support and fruitful discussions. The authors gratefully acknowledge the support of the Technical Platform of Physico-Chemical Analysis-Laghouat-Algeria.

Funding

This work was supported by the Algerian Ministry of Higher Education and Scientific Research and is part of “Projets de Recherche Formation-Universitaire” PRFU—PROJECT under contract B00L01UN030120220002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoulikha Hebboul.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draoui, A., Hebboul, Z., Lefkaier, I.K. et al. Facile synthesis route and characterizations of zinc orthotitanate nanoparticles tested for dye-sensitized solar cell DSSC applications. J IRAN CHEM SOC 19, 4515–4522 (2022). https://doi.org/10.1007/s13738-022-02624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02624-6

Keywords

Navigation