Skip to main content

Advertisement

Log in

A DFT/TD-DFT study of [Amprenavir + C60] PET nanocomplex: feasibility of C60 fullerene application as a nanocarrier

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The HIV (human immunodeficiency virus) attacks the immune system that, if not treated, causes AIDS. It also penetrates the central nervous system and causes HIV-related neurological disorders (HAND). In this study, fullerene C60 is proposed as a nanocarrier for Amprenavir (Amp), an anti-HIV drug. Also, some physicochemical properties of [Amp + C60] nanocomplex and its components have been theoretically investigated. The dipole moment of two components in the discussed complex (7.292 D) predicts that it will be soluble in polar solvents like water. Therefore, the process of drug delivery through the polar media will be feasible. Investigation of the formation energy and reduced density gradient of the discussed complex confirm that its components interact via weak interactions like Van der Waals forces. Thus, the release of the drug into the target tissue can be easily practical. It assumes no damage to Amp will occur. Fullerene, with unique properties as a highly delocalized conjugated π system, has shown high antioxidant capacity. The density of states and charge decomposition analysis revealed significant contribution of fullerene in the discussed complex orbitals. Amp will be preserved against adverse reactions during drug delivery due to the frontier complex orbitals that they are located on the fullerene part. Anti-HIV drugs like Amp are not able to cross the blood–brain barrier (BBB) and prevent HAND. Fullerene C60 may allow Amp to be transported across the BBB due to its small size and hydrophobicity. Examination of the Mulliken charge changes of the involved atoms, electron localization function , natural bond orbital , and electrostatic potential analyses indicate that the application of fullerene will improve the interaction of Amp with the virus protease. The photo-induced electron transfer studies have demonstrated that some electron transfer processes occurred in the discussed complex from Amp to fullerene C60 part. This feature can be utilized for monitoring and detecting the drug during the drug delivery process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eric A. Goethe, Naomi R. Kass, Joseph S. Kass, Neurologic Disease in HIV Infection, in Neurological Complications of Infectious Diseases. ed. by M.D. Rodrigo Hasbun (Springer International Publishing, Cham, 2021), pp. 165–197. https://doi.org/10.1007/978-3-030-56084-3_9

    Chapter  Google Scholar 

  2. A.R.P. Santiago, O. Fernandez-Delgado, A. Gomez, M.A. Ahsan, L. Echegoyen, Fullerenes as key components for low-dimensional (photo) electrocatalytic nanohybrid materials. Angew Chem Int, Ed 60, 122–141 (2021)

    Article  CAS  Google Scholar 

  3. P.A. Volberding, S.G. Deeks, Antiretroviral therapy and management of HIV infection. The Lancet 376(9734), 49–62 (2010)

    Article  Google Scholar 

  4. H. Mitsuya, A.K. Ghosh, Development of HIV-1 protease inhibitors, antiretroviral resistance, and current challenges of HIV/AIDS management. Aspartic. Acid. Proteases. as Ther. Targ 45, 245–262 (2010)

    CAS  Google Scholar 

  5. D.A. Cobb, N.A. Smith, B.J. Edagwa, J.M. McMillan, Long-acting approaches for delivery of antiretroviral drugs for prevention and treatment of HIV: a review of recent research. Expert. Opin. Drug. Deliv. 17(9), 1227–1238 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. G. Leonis, T. Steinbrecher, M.G. Papadopoulos, A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and Saquinavir complexes with HIV-1 protease due to flap mutation I50V: A systematic MM–PBSA and thermodynamic integration study. J. Chem. Inf. Model. 53(8), 2141–2153 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. S.L. Letendre, R.J. Ellis, I. Everall, B. Ances, A. Bharti, J.A. McCutchan, Neurologic complications of HIV disease and their treatment. Top. HIV. Med: Publ. Int. AIDS. Soc., USA 17(2), 46 (2009)

    Google Scholar 

  8. R.H. Enting, R.M. Hoetelmans, J.M. Lange, D.M. Burger, J.H. Beijnen, P. Portegies, Antiretroviral drugs and the central nervous system. AIDS 12(15), 1941–1955 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. A. De Luca, B. Ciancio, D. Larussa, R. Murri, A. Cingolani, M. Rizzo, M. Giancola, A. Ammassari, L. Ortona, Correlates of independent HIV-1 replication in the CNS and of its control by antiretrovirals. Neurology 59(3), 342–347 (2002)

    Article  PubMed  Google Scholar 

  10. I.A. Neagu, J. Olejarz, M. Freeman, D.I. Rosenbloom, M.A. Nowak, A.L. Hill, Life cycle synchronization is a viral drug resistance mechanism. PLoS Comput. Biol. 14(2), e1005947 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. A. Akhtar, A. Andleeb, T.S. Waris, M. Bazzar, A.-R. Moradi, N.R. Awan, M. Yar, Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J. Control. Release (2020). https://doi.org/10.1016/j.jconrel.2020.11.021

    Article  PubMed  Google Scholar 

  12. W.C.H.L. Poretsky, W.C. Hembree, Transgender Medicine (Springer, Cham, 2019)

    Book  Google Scholar 

  13. S. Mehmood, J. Marcoux, J. Gault, A. Quigley, S. Michaelis, S.G. Young, E.P. Carpenter, C.V. Robinson, Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat. Chem. 8(12), 1152–1158 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S.D. Pawar, C. Freas, I.T. Weber, R.W. Harrison, Analysis of drug resistance in HIV protease. BMC. Bioinform 19(11), 1–6 (2018)

    Google Scholar 

  15. D. Triki, M.E.C. Contreras, D. Flatters, B. Visseaux, D. Descamps, A.-C. Camproux, L. Regad, Analysis of the HIV-2 protease’s adaptation to various ligands: characterization of backbone asymmetry using a structural alphabet. Sci. Rep. 8(1), 1–13 (2018)

    Google Scholar 

  16. P. Simmons, Amprenavir (Agenerase). Res. Initiat. Treat. act: RITA 5(3), 7–10 (1999)

    CAS  Google Scholar 

  17. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318(6042), 162 (1985)

    Article  CAS  Google Scholar 

  18. Z. Mirza, S. Karim, In Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges., seminars in cancer biology. Elsevier 69, 226–237 (2021)

    CAS  Google Scholar 

  19. S. Gharehyakheh, A. Ahmeda, A. Haddadi, M. Jamshidi, M. Nowrozi, M.M. Zangeneh, A. Zangeneh, Effect of gold nanoparticles synthesized using the aqueous extract of satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157: H7 and listeria monocytogenes in minced camel’s meat: the role of nanotechnology in the food industry. Appl. Organomet. Chem. 34(4), e5492 (2020)

    Article  CAS  Google Scholar 

  20. J.C. Adkins, D. Faulds, Amprenavir. Drugs 55(6), 837–842 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. R. Partha, J.L. Conyers, Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261 (2009)

    Article  CAS  Google Scholar 

  22. K. Aschberger, H.J. Johnston, V. Stone, R.J. Aitken, C.L. Tran, S.M. Hankin, S.A. Peters, F.M. Christensen, Review of fullerene toxicity and exposure–appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol. 58(3), 455–473 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. I. Rašović, Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 33(7), 777–794 (2017)

    Article  CAS  Google Scholar 

  24. N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2(6), 1821–1871 (2021)

    Article  Google Scholar 

  25. J.S. Al-Otaibi, Y.S. Mary, Y.S. Mary, S. Kaya, G. Serdaroglu, DFT computational study of trihalogenated aniline derivative’s adsorption onto graphene/fullerene/fullerene-like nanocages, X12Y12 (X= Al, B, and Y= N, P). J. Biomol. Struct. Dyn. (2021). https://doi.org/10.1080/07391102.2021.1914172

    Article  PubMed  Google Scholar 

  26. M.N. Namivandi, A.A. Taherpour, M. Ghadermazi, M. Jamshidi, Theoretical study on cubane molecule and its reduced states (C8H8n; n= 0 and − 1 to− 4); a first principle DFT study. J. Iran. Chem. Soc. 18(12), 3303–3312 (2021)

    Article  CAS  Google Scholar 

  27. S.H. Friedman, D.L. DeCamp, R.P. Sijbesma, G. Srdanov, F. Wudl, G.L. Kenyon, Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc. 115(15), 6506–6509 (1993)

    Article  CAS  Google Scholar 

  28. H. Tzoupis, G. Leonis, S. Durdagi, V. Mouchlis, T. Mavromoustakos, M.G. Papadopoulos, Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations. J. Comput. Aided Mol. Des. 25(10), 959–976 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. S. Tanimoto, S. Sakai, S. Matsumura, D. Takahashi, K. Toshima, Target-selective photo-degradation of HIV-1 protease by a fullerene-sugar hybrid. Chem. Commun. 44, 5767–5769 (2008)

    Article  CAS  Google Scholar 

  30. A. Taherpour, P. Gholami Keivanani, M. Jamshidi, S. Hatami, N. Zolfaghar, Theoretical studies on photo-induced electron transfer process on [Thioridazine] C60 nano-complex; A first principle DFT and TD-DFT. Scientia Iranica 28(3), 1343–1352 (2021)

    Google Scholar 

  31. I.V. Mikheev, M.M. Sozarukova, D.Y. Izmailov, I.E. Kareev, E.V. Proskurnina, M.A. Proskurnin, Antioxidant potential of aqueous dispersions of fullerenes C60, C70, and Gd@ C82. Int. J. Mol. Sci. 22(11), 5838 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mikheev, I. V., Sozarukova, M. M., Izmailov, D. Y., Kareev, I. E., Proskurnina, E. V., Proskurnin, M. A.,(2021) In vitro Antioxidant Potential Evaluation of Non-Functionalized Fullerenes and Endofullerene.

  33. L.L. Dugan, D.M. Turetsky, C. Du, D. Lobner, M. Wheeler, C.R. Almli, C.K.-F. Shen, T.-Y. Luh, D.W. Choi, T.-S. Lin, Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. 94(17), 9434–9439 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Pate, S. Jain, AN INCLUSIVE review on novel drug delivery strategies for an effectual delivery of bio-active drug molecules in the treatment of acne. J. Adv. Sci. Res. 11(4–9), 1–15 (2021)

    Google Scholar 

  35. T. Henna, V. Raphey, R. Sankar, V.A. Shirin, H. Gangadharappa, K. Pramod, Carbon nanostructures: the drug and the delivery system for brain disorders. Int. J. Pharm. (2020). https://doi.org/10.1016/j.ijpharm.2020.119701

    Article  PubMed  Google Scholar 

  36. P. Calvo, B. Gouritin, H. Chacun, D. Desmaële, J. D’Angelo, J.-P. Noel, D. Georgin, E. Fattal, J.P. Andreux, P. Couvreur, Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res. 18(8), 1157–1166 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. K. Minami, J. Song, L.K. Shrestha, K. Ariga, Nanoarchitectonics for fullerene biology. Appl. Mater. Today 23, 100989 (2021)

    Article  Google Scholar 

  38. H. Chen, M.A. Ratner, G.C. Schatz, Time-dependent theory of the rate of photo-induced electron transfer. J. Phys. Chem. C 115(38), 18810–18821 (2011)

    Article  CAS  Google Scholar 

  39. K. Gholivand, M. Hosseini, Y. Maghsoud, J. Valenta, A.A. Ebrahimi Valmuzi, A. Owczarzak, M. Kubicki, M. Jamshidi, M. Kahnouji, Relations between structural and luminescence properties of novel lanthanide nitrate complexes with bis-phosphoramidate ligands. Inorg. Chem. 58(9), 5630–5645 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Sluch, M., Quenching of pyrene fluorescence by fullerene C00 in Langmuir—Blodgett films. 1997;

  41. T.D. Bell, K.P. Ghiggino, K.A. Jolliffe, M.G. Ranasinghe, S.J. Langford, M.J. Shephard, M.N. Paddon-Row, Photoinduced energy and electron transfer in a giant zinc porphyrin− bridge− C60 system. J. Phys. Chem. A 106(43), 10079–10088 (2002)

    Article  CAS  Google Scholar 

  42. H. Li, H. Pang, L. Zhang, J. Mao, W. Zhang, J. Jiang, P. Li, Q. Zhang, Ultrasensitive biosensing platform based on luminescence quenching ability of fullerenol quantum dots. RSC. Adv. 11(32), 19690–19694 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Karami, M. Shamsipur, A.A. Taherpour, M. Jamshidi, A. Barati, In situ chromophore doping: a new mechanism for the long-wavelength emission of carbon dots. J. Phys. Chem. C 124(19), 10638–10646 (2020)

    Article  CAS  Google Scholar 

  44. R. Patel, Y.P. Singh, Synthesis, structural characterization, DFT studies and in-vitro antidiabetic activity of new mixed ligand oxovanadium (IV) complex with tridentate Schiff base. J. Mol. Struct. 1153, 162–169 (2018)

    Article  CAS  Google Scholar 

  45. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. comput. chem 29(5), 839–845 (2008)

    Article  PubMed  CAS  Google Scholar 

  46. A.A. Taherpour, Z. Shahri, O. Rezaei, M. Jamshidi, T. Fellowes, Adsorption, intercalation and sensing of helium on yttrium functionalized open edge boron nitride: a first principle DFT and TDDFT study. Chem. Phys. Lett. 691, 231–237 (2018)

    Article  CAS  Google Scholar 

  47. S. Pathak, E. Cao, M.C. Davidson, S. Jin, G.A. Silva, Quantum dot applications to neuroscience: new tools for probing neurons and glia. J. Neurosci. 26(7), 1893–1895 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. Kreuter, R.N. Alyautdin, D.A. Kharkevich, A.A. Ivanov, Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674(1), 171–174 (1995)

    Article  CAS  PubMed  Google Scholar 

  49. L. Domingo, M. Ríos-Gutiérrez, P. Pérez, Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21(6), 748 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  50. R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105(26), 7512–7516 (1983)

    Article  CAS  Google Scholar 

  51. R.G. Parr, L. Szentpály, v., Liu, S., Electrophilicity index. J. Am. Chem. Soc. (1999). https://doi.org/10.1021/ja983494x

    Article  Google Scholar 

  52. Pérez, P., Domingo, L. R., Aizman, A., Contreras, R., (2007) The electrophilicity index in organic chemistry. In Theor. comput. Chem., Elsevier: Vol. 19, pp 139-201

  53. A.A. Taherpour, N. Zolfaghar, M. Jamshidi, J. Jalilian, O. Rezaei, Z. Shahri, Structural distortions of fullerene C60n (n = 0 to − 6) by first principle density functional theory. J. Mol. Struct. 1184, 546–556 (2019)

    Article  CAS  Google Scholar 

  54. L.R. Domingo, M.J. Aurell, P. Pérez, R. Contreras, Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58(22), 4417–4423 (2002)

    Article  CAS  Google Scholar 

  55. J.-P. Jolivet, Water and Metal Cations in Solution. In Met Oxide Nanostruct. Chem (Oxford. University Press). ISBN-13:9780190928117, November 2020 (2009)

  56. S. Dapprich, G. Frenking, Investigation of donor-acceptor interactions: A charge decomposition analysis using fragment molecular orbitals. J. Phys. Chem. 99(23), 9352–9362 (1995)

    Article  CAS  Google Scholar 

  57. M. Emadoddin, A.A. Taherpour, M. Jamshidi, Photo-induced electron transfer of [C60+ Abacavir] nano-complex and feasibility of C60 fullerene application as a chemical shift reagent: a DFT/TD-DFT insights. J. Iran. Chem. Soc. (2021). https://doi.org/10.1007/s13738-021-02360-3

    Article  Google Scholar 

  58. S.I. Gorelsky, E.I. Solomon, Extended charge decomposition analysis and its application for the investigation of electronic relaxation. Theoret. Chem. Acc. 119(1–3), 57–65 (2008)

    Article  CAS  Google Scholar 

  59. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, , Gaussian, Inc., Wallingford CT, Gaussian 09, Revision A.02. 2009.

  60. C.-H. Shen, Y.-F. Wang, A.Y. Kovalevsky, R.W. Harrison, I.T. Weber, Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters. FEBS J 277(18), 3699–3714 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. C. Parlak, Ö. Alver, A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes. Chem. Phys. Lett. 678, 85–90 (2017)

    Article  CAS  Google Scholar 

  62. F. Hassani, H. Tavakol, A DFT, AIM and NBO study of adsorption and chemical sensing of iodine by S-doped fullerenes. Sens. Actuators, B Chem. 196, 624–630 (2014)

    Article  CAS  Google Scholar 

  63. A.A. Taherpour, M. Jamshidi, O. Rezaei, DFT and TD-DFT theoretical studies on photo-induced electron transfer process on [Cefamandole].C60 nano-complex. J. Mol. Graph. Model. 75, 42–48 (2017)

    Article  CAS  PubMed  Google Scholar 

  64. M.N. Namivandi, A.A. Taherpour, M. Ghadermazi, M. Jamshidi, Novel donor–acceptor non-fullerene metal–organic solar cells based on open edge Sc@ BN: a DFT and TD-DFT study. J. Iran. Chem. Soc. 18(9), 2271–2282 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We have acknowledged the Theoretical and Computational Research Center of Chemistry Faculty of the Razi University of Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avat Arman Taherpour.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadoddin, M., Taherpour, A.A. & Jamshidi, M. A DFT/TD-DFT study of [Amprenavir + C60] PET nanocomplex: feasibility of C60 fullerene application as a nanocarrier. J IRAN CHEM SOC 19, 4169–4186 (2022). https://doi.org/10.1007/s13738-022-02592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02592-x

Keywords

Navigation