Skip to main content
Log in

Synthesis and characterization of eggshell membrane polymer-TiO2 nanocomposite for newly synthesized ionic liquid release

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This work includes the synthesis of a new ionic liquid (IL) derived from benzisothiazolinon (Bit) by the reaction of benzisothiazolinon with HCl at room temperature. This ionic liquid (BitIL) was characterized using FTIR, 1HNMR, 13C-NMR, and elemental analysis. Furthermore, eggshell membrane protein polymer (ESMP) was used as a natural polymer to prepare its nanocomposite with titanium oxide nanoparticles (TiO2 NPs) (ESMP-TiO2). At the end of the synthesis route, the as-prepared benzisothiazolinon ionic liquid (BitIL) was grafted on the surface of the nanocomposite to synthesis benzisothiazolinon ionic liquid@ eggshell membrane protein polymer–titanium oxide (BitIL@ESMP-TiO2) nanocomposite by the one-pot method. The BitIL@ESMP-TiO2 nanocomposite was characterized using FTIR, XRD, and TEM. Moreover, the kinetics of in vitro release of BitIL from BitIL@ESMP-TiO2 was studied using Korsmeyer and Peppas equation at two different temperatures and pHs. From the results, it was found that the BitIL released from ESMP-TiO2 was about 85%, at 37 °C. Furthermore, the pH = 1.2 (stomach acidity) produced n values of 0.645 and 0.761, indicating the prevalence of anomalous type, whereas the pH = 7.2 (blood acidity) produced quasi-Fickian type diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Srivastava, T. Yadav, S. Sharma, A. Nayak, A.A. Kumari, N. Mishra, Polymers in drug delivery. J. Biosci. Med. 4(1), 69–84 (2015)

    Google Scholar 

  2. D. Schmaljohann, Thermo-and pH-responsive polymers in drug delivery. Adv. Drug. Deliv. Rev. 58(15), 1655–1670 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. J. Sharma, L. Kaur, N. Kanuja, M. Nagpal, R. Bala, Natural polymers-promising potential in drug delivery. Int. J. Pharm. Tech. Res. 5(2), 684–699 (2013)

    CAS  Google Scholar 

  4. B. Bangar, N. Shinde, S. Deshmukh, B. Kale, Natural polymers in drug delivery development. Res. J. Pharm. Dosage Forms Technol. 6(1), 54–57 (2014)

    Google Scholar 

  5. J.J. Milligan, S. Saha, I.C. Jenkins, A. Chilkoti, Genetically encoded elastin-like polypeptide nanoparticles for drug delivery. Curr. Opin. Biotechnol. 74, 146–153 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. M. Rahim Labbafzadeh, M.H. Vakili, Application of magnetic electrospun polyvinyl alcohol/collagen nanofibres for drug delivery systems. Mol. Simul. 48(1), 1–7 (2022)

    Article  CAS  Google Scholar 

  7. C. Lei, X.R. Liu, Q.B. Chen, Y. Li, J.L. Zhou, L.Y. Zhou, T. Zou, Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release 331, 416–433 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. P. Severino, C.F. da Silva, L.N. Andrade, D. de Lima Oliveira, J. Campos, E.B. Souto, Alginate nanoparticles for drug delivery and targeting. Curr. Pharm. Des. 25(11), 1312–1334 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. R. Parhi, Drug delivery applications of chitin and chitosan: a review. Environ. Chem. Lett. 18(3), 577–594 (2020)

    Article  CAS  Google Scholar 

  10. R. Jayasree, K. Madhumathi, D. Rana, M. Ramalingam, R.P. Nankar, M. Doble, T.S. Kumar, Development of egg shell derived carbonated apatite nanocarrier system for drug delivery. J. Nanosci. Nanotechnol. 18(4), 2318–2324 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. F. Yi, Z.X. Guo, L.X. Zhang, J. Yu, Q. Li, Soluble eggshell membrane protein: preparation, characterization and biocompatibility. Biomaterials 25(19), 4591–4599 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. M.A. Alheety, A. Raoof, S.A. Al-Jibori, A. Karadağ, A.I. Khaleel, H. Akbaş, O. Uzun, Eco-friendly C60-SESMP-Fe3O4 inorganic magnetizable nanocomposite as high-performance adsorbent for magnetic removal of arsenic from crude oil and water samples. Mater. Chem. Phys. 231, 292–300 (2019)

    Article  CAS  Google Scholar 

  13. E. Ohto-Fujita, T. Konno, M. Shimizu, K. Ishihara, T. Sugitate, J. Miyake, Y. Atomi, Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts. Cell Tissue Res. 345(1), 177–190 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Razmi, S.J. Musevi, R. Mohammad-Rezaei, Solid phase extraction of mercury (II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry. Microchim. Acta 183(2), 555–562 (2016)

    Article  CAS  Google Scholar 

  15. Y. Zhang, W. Wang, L. Li, Y. Huang, J. Cao, Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic (V) in environmental water samples. Talanta 80(5), 1907–1912 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. A. Mittal, M. Teotia, R.K. Soni, J. Mittal, Applications of egg shell and egg shell membrane as adsorbents: a review. J. Mol. Liq. 223, 376–387 (2016)

    Article  CAS  Google Scholar 

  17. F. Yi, J. Yu, Z.X. Guo, L.X. Zhang, Q. Li, Natural bioactive material: a preparation of soluble eggshell membrane protein. Macromol. Biosci. 3(5), 234–237 (2003)

    Article  CAS  Google Scholar 

  18. S. Sarkar, S. Dutta, S. Chakrabarti, P. Bairi, T. Pal, Redox-switchable copper (I) metallogel: a metal–organic material for selective and naked-eye sensing of picric acid. ACS Appl. Mater. Int. 6(9), 6308–6316 (2014)

    Article  CAS  Google Scholar 

  19. J.L. Segura, The chemistry of electroluminescent organic materials. Acta Polym. 49(7), 319–344 (1998)

    Article  CAS  Google Scholar 

  20. J. Rivnay, R.M. Owens, G.G. Malliaras, The rise of organic bioelectronics. Chem. Mater. 26(1), 679–685 (2014)

    Article  CAS  Google Scholar 

  21. , B. Iddon, Benzo [c] thiophenes, in Advances in Heterocyclic Chemistry, vol. 14 (Academic Press, 1972), pp. 331–381

  22. T. Ishikawa, Benzo [c] phenanthridine bases and their antituberculosis activity. Med. Res. Rev. 21(1), 61–72 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. N. Kaur, Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles. J. Iran. Chem. Soc. 16(12), 2525–2553 (2019)

    Article  CAS  Google Scholar 

  24. M. Edrisi, N. Azizi, Sulfonic acid-functionalized graphitic carbon nitride composite: a novel and reusable catalyst for the one-pot synthesis of polysubstituted pyridine in water under sonication. J. Iran. Chem. Soc. 17(4), 901–910 (2020)

    Article  CAS  Google Scholar 

  25. Zabiulla, F.H. Al-Ostoot, A.M. S, M. Al-Ghorbani, S.A. Khanum, Recent investigation on heterocycles with one nitrogen [piperidine, pyridine and quinoline], two nitrogen [1,3,4-thiadiazole and pyrazole] and three nitrogen [1,2,4-triazole]: a review. J. Iran. Chem. Soc. 19, 23–54 (2022). https://doi.org/10.1007/s13738-021-02293-x

    Article  CAS  Google Scholar 

  26. F.H. Al-Ostoot, S. Salah, S.A. Khanum, Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates. J. Iran. Chem. Soc. 18(8), 1839–1875 (2021)

    Article  CAS  Google Scholar 

  27. Y. Volkova, S. Baranin, I. Zavarzin, A3 coupling reaction in the synthesis of heterocyclic compounds. Adv. Synth. Catal. 363(1), 40–61 (2021)

    Article  CAS  Google Scholar 

  28. M. Malekshahi Byranvand, A. Nemati Kharat, L. Fatholahi, Z. Malekshahi Beiranvand, A review on synthesis of nano-TiO2 via different methods. J. nanostruct. 3(1), 1–9 (2013)

    Google Scholar 

  29. R.N. Esfahani, S. Khaghani, A. Azizi, F. Mortazaeinezhad, M. Gomarian, Facile and eco-friendly synthesis of TiO2 NPs using extracts of Verbascum thapsus plant: an efficient photocatalyst for reduction of Cr (VI) ions in the aqueous solution. J. Iran. Chem. Soc. 17(1), 205–213 (2020)

    Article  CAS  Google Scholar 

  30. Y. Sun, S. Wang, J. Zheng, Biosynthesis of TiO2 nanoparticles and their application for treatment of brain injury-An in-vitro toxicity study towards central nervous system. J. Photochem. Photobiol. B 194, 1–5 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. R.J. Kamble, P.V. Gaikwad, K.M. Garadkar, S.R. Sabale, V.R. Puri, S.S. Mahajan, Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles. J. Iran. Chem. Soc. 19(1), 303–312 (2022)

    Article  CAS  Google Scholar 

  32. S. Freiberg, X.X. Zhu, Polymer microspheres for controlled drug release. Int. J. Pharm. 282(1–2), 1–18 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. S. Puttipipatkhachorn, J. Nunthanid, K. Yamamoto, G.E. Peck, Drug physical state and drug–polymer interaction on drug release from chitosan matrix films. J. Control. Release 75(1–2), 143–153 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. I. Zaborniak, A. Macior, P. Chmielarz, Smart, naturally-derived macromolecules for controlled drug release. Molecules 26(7), 1918 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y. Ali, A. Alqudah, S. Ahmad, S. Abd Hamid, U. Farooq, Macromolecules as targeted drugs delivery vehicles: an overview. Des. Monomers Polym. 22, 91 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Jahanshahi, Z. Babaei, Protein nanoparticle: a unique system as drug delivery vehicles. Afr. J. Biotechnol. 7(25), 4926–4934 (2008)

  37. D. Ghosh, X. Peng, J. Leal, R.P. Mohanty, Peptides as drug delivery vehicles across biological barriers. J. Pharm. Investig. 48(1), 89–111 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. T. Wang, H. Jiang, L. Wan, Q. Zhao, T. Jiang, B. Wang, S. Wang, Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 13, 354–363 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. M.A. Alheety, S.A. Al-Jibori, A.H. Ali, A.R. Mahmood, H. Akbaş, A. Karadağ, O. Uzun, M.H. Ahmed, Ag (I)-benzisothiazolinone complex: synthesis, characterization, H2 storage ability, nano transformation to different Ag nanostructures and Ag nanoflakes antimicrobial activity. Mater. Res. Exp. 6(12), 125071 (2019)

    Article  CAS  Google Scholar 

  40. H. Azizi-Toupkanloo, M. Karimi-Nazarabad, G.R. Amini, A. Darroudi, Immobilization of AgCl@ TiO2 on the woven wire mesh: Sunlight-responsive environmental photocatalyst with high durability. Sol. Energy 196, 653–662 (2020)

    Article  CAS  Google Scholar 

  41. M. Karimi-Nazarabad, E.K. Goharshadi, M. Aziznezhad, Solar mineralization of hard-degradable amphetamine using TiO2/RGO nanocomposite. Chem. Select 4(48), 14175–14183 (2019)

    CAS  Google Scholar 

  42. A.H. Majeed, D.H. Hussain, E.T.B. Al-Tikrity, M.A. Alheety, Poly (o-Phenylenediamine-GO-TiO2) nanocomposite: modulation, characterization and thermodynamic calculations on its H2 storage capacity. Chem. Data Collect. 28, 100450 (2020)

    Article  CAS  Google Scholar 

  43. G.M. Khan, J.B. Zhu, Studies on drug release kinetics from ibuprofen–carbomer hydrophilic matrix tablets: influence of co-excipients on release rate of the drug. J. Control. Release 57(2), 197–203 (1999)

    Article  CAS  PubMed  Google Scholar 

  44. N.A. Peppas, P. Colombo, Analysis of drug release behavior from swellable polymer carriers using the dimensionality index. J. Control. Release 45(1), 35–40 (1997)

    Article  CAS  Google Scholar 

  45. M.J. Durrani, A. Andrews, R. Whitaker, S.C. Benner, Studies on drug release kinetics from carbomer matrices. Drug. Dev. Ind. Pharm. 20(15), 2439–2447 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa A. Alheety.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alheety, M.A., Majeed, A.H., Ali, A.H. et al. Synthesis and characterization of eggshell membrane polymer-TiO2 nanocomposite for newly synthesized ionic liquid release. J IRAN CHEM SOC 19, 4005–4015 (2022). https://doi.org/10.1007/s13738-022-02584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02584-x

Keywords

Navigation