Skip to main content

Advertisement

Log in

In vitro activity, stability, and lipophilicity changes of cisplatin through substitution of different amine ligands

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, several cisplatin analogs were designed to investigate the antitumor activity and lipophilicity effects in amine change. The amines of the cisplatin molecule were substituted with aliphatic amines in different analogs. The cytotoxicity of analogs against human colon cancer (HCT116) was investigated using MTT assay, and spectroscopic methods were used to determine the DNA binding mode. Cytotoxicity studies revealed cis-dichloro-dimethylamine-platinum has a lower IC50 (48.87 µM) than carboplatin (68.46 µM) and more than cisplatin (21 µM) against human colon cancer cells (HCT116), respectively. DNA denaturation study indicated that the stability of DNA in the presence of these compounds diminished and substitution of propylamine and methylamine groups increased DNA denaturation. Further, the interaction of the desired compounds with DNA proved to be a spontaneous process. Tm analysis also revealed that cisplatin, cis-dichloro-dimethylamine-platinum, and cis-dichloro-dipropylamine-platinum complexes made DNA double helix unstable via covalent bond, while cis-dichloro-dibutylamine-platinum and cis-dichloro-diisobutylamine-platinum stabilized DNA via electrostatic binding to DNA. The results of fluorescence studies showed that the quenching nature of cisplatin and methyl and propyl systems was dynamic, while the static quenching was observed in the presence of cis-dichloro-dibutylamine-platinum and cis-dichloro-diisobutylamine-platinum. The molecular docking simulations and DFT analysis were performed to investigate the binding sites and chemical behavior of cisplatin analogs, respectively. Molecular docking demonstrated that except cis-dichloro-diisobutylamine-platinum, other complexes had higher negative docking energy than cisplatin for interaction with DNA, and methyl and propyl complexes may be good candidates for anticancer drugs.

Graphical abstract

Some anticancer Pt(II) complexes as cisplatin analogs were synthesized with aliphatic amines to investigate the lipophilicity effects. In vitro cytotoxicity effects were tested against human colon cancer (HCT116). Moreover, the modes of DNA binding with synthesized compounds were investigated using fluorescence spectra, DFT and molecular docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

EB:

Ethidium bromide

CT-DNA:

Calf thymus DNA

DFT:

Density functional theory

ADT:

AutoDock tools

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

NBO:

Natural orbital bond analysis

References

  1. A. Basu, S. Krishnamurthy, Cellular responses to cisplatin-induced DNA damage. J. Nucl. Acids (2010). https://doi.org/10.4061/2010/201367

    Article  Google Scholar 

  2. S.E. Sherman, D. Gibson, A.H. Wang, S.J. Lippard, X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. Science 230(4724), 412–417 (1985). https://doi.org/10.1126/science.4048939

    Article  CAS  PubMed  Google Scholar 

  3. I.W. Achkar, N. Abdulrahman, H. Al-Sulaiti, J.M. Joseph, S. Uddin, F. Mraiche, Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J. Transl. Med. 16(1), 96 (2018)

    Article  CAS  Google Scholar 

  4. S. Manohar, N. Leung, Cisplatin nephrotoxicity: a review of the literature. J. Nephrol. 31(1), 15–25 (2018). https://doi.org/10.1007/s40620-017-0392-z

    Article  CAS  PubMed  Google Scholar 

  5. R. Oun, Y.E. Moussa, N.J. Wheate, The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 47(19), 6645–6653 (2018). https://doi.org/10.1039/C8DT00838H

    Article  CAS  PubMed  Google Scholar 

  6. D.F. Long, A.J. Repta, Cisplatin: chemistry, distribution and biotransformation. Biopharm. Drug Dispos. 2(1), 1–16 (1981). https://doi.org/10.1002/bdd.2510020102

    Article  CAS  PubMed  Google Scholar 

  7. N. Shah, D.S. Dizon, New-generation platinum agents for solid tumors. Future Oncol. 5(1), 33–42 (2009). https://doi.org/10.2217/14796694.5.1.33

    Article  CAS  PubMed  Google Scholar 

  8. H. Cui, R. Goddard, K.R. Pörschke, A. Hamacher, M.U. Kassack, Bispidine analogs of cisplatin, carboplatin, and oxaliplatin. Synthesis, structures, and cytotoxicity. Inorg. Chem. 53(7), 3371–3384 (2014). https://doi.org/10.1021/ic402737f

    Article  CAS  PubMed  Google Scholar 

  9. D.S. Goodsell, The molecular perspective: cisplatin. Stem Cells. 24(3), 514–515 (2006). https://doi.org/10.1634/stemcells.2006-CSC2

    Article  PubMed  Google Scholar 

  10. S. Ghosh, Cisplatin: the first metal based anticancer drug. Bioorg. Chem. 88, 102925 (2019). https://doi.org/10.1016/j.bioorg.2019.102925

    Article  CAS  PubMed  Google Scholar 

  11. A.M. Yassin, M. Elnouby, N.M. El-Deeb, E.E. Hafez, Tungsten oxide nanoplates; the novelty in targeting metalloproteinase-7 gene in both cervix and colon cancer cells. Appl. Biochem. Biotechnol. 180(4), 623–637 (2016). https://doi.org/10.1007/s12010-016-2120-x

    Article  CAS  PubMed  Google Scholar 

  12. R.K. Kesharwani, V. Srivastava, P. Singh, S.I. Rizvi, K. Adeppa, K. Misra, A novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β). Appl. Biochem. Biotechnol. 176(7), 1996–2017 (2015). https://doi.org/10.1007/s12010-015-1696-x

    Article  CAS  PubMed  Google Scholar 

  13. K.M. Deo, D.L. Ang, B. McGhie, A. Rajamanickam, A. Dhiman, A. Khoury, J. Holland, A. Bjelosevic, B. Pages, C. Gordon, J.R. Aldrich-Wright, Platinum coordination compounds with potent anticancer activity. Coord. Chem. Rev. 375, 148–163 (2018)

    Article  CAS  Google Scholar 

  14. E. Pantoja, A. Álvarez-Valdés, J.M. Pérez, C. Navarro-Ranninger, J. Reedijk, Synthesis and characterization of new cis-[PtCl2(isopropylamine)(amine)] compounds: cytotoxic activity and reactions with 5-GMP compared with their trans-platinum isomers. Inorg. Chim. Acta 339, 525–531 (2002)

    Article  CAS  Google Scholar 

  15. F. Safa Shams Abyaneh, M. Eslami Moghadam, M. Hossaini Sadr, A. Divsalar, Effect of lipophilicity of amylamine and amylglycine ligands on biological activity of new anticancer cisplatin analog. J. Biomol. Struct. Dyn. 36(4), 893–905 (2018). https://doi.org/10.1080/07391102.2017.1301273

    Article  CAS  PubMed  Google Scholar 

  16. E. Bersanetti, A. Pasini, Antitumor complexes of platinum with carrier molecules. 2 [1]. Mixed complexes of amino acids and tert-butylamine. Inorg. Chim. Acta 93, 167–172 (1984). https://doi.org/10.1016/S0020-1693(00)88158-X

    Article  CAS  Google Scholar 

  17. G.R. Gale, M.G. Rosenblum, L.M. Atkins, E.M. Walker Jr., A.B. Smith, S.J. Meischen, Antitumor action of cis-Dichlorobis(methylamine)platinum(II). J. Natl. Cancer Inst. 51(4), 1227–1234 (1973). https://doi.org/10.1093/jnci/51.4.1227

    Article  CAS  PubMed  Google Scholar 

  18. S. Wimmer, F. Wimmer, J. Jaud, N.P. Johnson, P. Castan, A Study of cis-Dichlorobis(methylamine)platinum(II): crystal and molecular structures of two crystal forms. Inorg. Chim. Acta 144, 25–30 (1988). https://doi.org/10.1016/S0020-1693(00)80962-7

    Article  CAS  Google Scholar 

  19. M.J. Cleare, J.D. Hoeschele, Studies on the antitumor" activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorg. Chem. 2(3), 187–210 (1973). https://doi.org/10.1016/S0006-3061(00)80249-5

    Article  CAS  Google Scholar 

  20. F. Safa Shams Abyaneh, M. Eslami Moghadam, A. Divsalar, D. Ajloo, M. Hosaini Sadr, Improving anticancer activity and solubility of cisplatin by methylglycine and methyl amine ligands against human breast adenocarcinoma cell line. Appl. Biochem. Biotechnol. 186, 271–291 (2018). https://doi.org/10.1007/s12010-018-2715-5

    Article  CAS  Google Scholar 

  21. M. Kantoury, M. Eslami Moghadam, A.A. Tarlani, A. Divsalar, Structure effect of some new anticancer Pt(II) complexes of amino acid derivatives with small branched or linear hydrocarbon chains on their DNA interaction. Chem. Biol. Drug Des. 88(1), 76–87 (2016). https://doi.org/10.1111/cbdd.12735

    Article  CAS  PubMed  Google Scholar 

  22. M. Eslami Moghadam, M. Saidifar, A. Divsalar, H. Mansouri-Torshizi, A.A. Saboury, H. Farhangian et al., Rich spectroscopic and molecular dynamic studies on the interaction of cytotoxic Pt(II) and Pd(II) complexes of glycine derivatives with calf thymus DNA. J. Biomol. Struct. Dyn. 34(1), 206–222 (2016). https://doi.org/10.1080/07391102.2015.1015056

    Article  CAS  PubMed  Google Scholar 

  23. R.F. Greene, C.N. Pace, Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J. Biol. Chem. 249(17), 5388–5393 (1974)

    Article  CAS  Google Scholar 

  24. M. Jain, R. Nilsson, S. Sharma, N. Madhusudhan, T. Kitami, A.L. Souza, R. Kafri, M.W. Kirschner, C.B. Clish, V.K. Mootha, Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084), 1040–1044 (2012). https://doi.org/10.1126/science.1218595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell et al., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009). https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Neidle, E.L. Rayner, I.J. Simpson, N.J. Smith, J. Mann, A. Baron et al., Symmetric bis-benzimidazoles: new sequence-selective DNA-binding molecules. Chem. Commun. (1999). https://doi.org/10.1039/a901074b

    Article  Google Scholar 

  27. M. Heydari, M.E. Moghadam, A.A. Tarlani, H. Farhangian, DNA as a target for anticancer Phen-Imidazole Pd(II) complexes. Appl. Biochem. Biotechnol. 182(1), 110–127 (2017). https://doi.org/10.1007/s12010-016-2314-2

    Article  CAS  PubMed  Google Scholar 

  28. S. Shahraki, H. Mansouri-Torshizi, A. Heydari, A. Ghahghaei, A. Divsalar, A.A. Saboury et al., Platinum(II) and Palladium(II) complexes with 1,10-phenanthroline and pyrrolidinedithiocarbamato ligands: synthesis, DNA-binding and anti-tumor activity in leukemia K562 cell lines. Iran. J. Sci. Technol. (Sciences) 39(2), 187–198 (2015). https://doi.org/10.22099/ijsts.2015.3018

    Article  Google Scholar 

  29. H. Mansouri-Torshizi, S. Shahraki, Z.S. Nezami, A. Ghahghaei, S. Najmedini, A. Divsalar et al., Platinum(II)/palladium(II) complexes with n-propyldithiocarbamate and 2,2′-bipyridine: synthesis, characterization, biological activity and interaction with calf thymus DNA. Complex Metals 1(1), 23–31 (2014). https://doi.org/10.1080/2164232X.2014.883288

    Article  CAS  Google Scholar 

  30. H. Farhangian, M. Eslami Moghadam, A. Divsalar, A. Rahiminezhad, Anticancer activity of novel amino acid derivative of palladium complex with phendione ligand against of human colon cancer cell line. J. Biol. Inorg. Chem. 22(7), 1055–1064 (2017). https://doi.org/10.1007/s00775-017-1483-y

    Article  CAS  PubMed  Google Scholar 

  31. A. Divsalar, A.A. Saboury, H. Mansoori-Torshizi, M.I. Moghaddam, F. Ahmad, G.H. Hakimelahi, Comparative studies on the interaction between bovine β-lacto-globulin type A and B and a new designed Pd(II) complex with anti-tumor activity at different temperatures. J. Biomol. Struct. Dyn. 26(5), 587–597 (2009). https://doi.org/10.1080/07391102.2009.10507274

    Article  CAS  PubMed  Google Scholar 

  32. M.A. Grant, R.M. Baron, A.A. Macias, M.D. Layne, M.A. Perrella, A.C. Rigby, Netropsin improves survival from endotoxaemia by disrupting HMGA1 binding to the NOS2 promoter. Biochem. J. 418(1), 103–112 (2009). https://doi.org/10.1042/BJ20081427

    Article  CAS  PubMed  Google Scholar 

  33. R. Mital, N. Jain, T.S. Srivastava, Synthesis, characterization and cytotoxic studies of diamine and diimine palladium(II) complexes of diethyldithiocarbamate and binding of these and analogous platinum(II) complexes with DNA. Inorg. Chim. Acta 166(1), 135–140 (1989). https://doi.org/10.1016/S0020-1693(00)80798-7

    Article  CAS  Google Scholar 

  34. H.F. Crouse, E.M. Petrunak, A.M. Donovan, A.C. Merkle, B.L. Swartz, S. Basu, Static and dynamic quenching of tryptophan fluorescence in various proteins by a Chromium (III) complex. Spectrosc. Lett. 44(5), 369–374 (2011). https://doi.org/10.1080/00387010.2010.546470

    Article  CAS  Google Scholar 

  35. C. Wang, Q.-H. Wu, Z. Wang, J. Zhao, Study of the interaction of carbamazepine with bovine serum albumin by fluorescence quenching method. Anal. Sci. 22(3), 435–8 (2006). https://doi.org/10.2116/analsci.22.435

    Article  CAS  PubMed  Google Scholar 

  36. P. Zhang, J. Chen, Y. Liang, DNA binding, cytotoxicity, and apoptotic-inducing activity of ruthenium(II) polypyridyl complex. Acta Biochim. Biophys. Sin. 42(7), 440–449 (2010). https://doi.org/10.1093/abbs/gmq040

    Article  CAS  PubMed  Google Scholar 

  37. J. Reedijk, Why does cisplatin reach Guanine-N7 with competing S-donor ligands available in the cell? Chem. Rev. 99(9), 2499–2510 (1999). https://doi.org/10.1021/cr980422f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully appreciate the Chemistry & Chemical Engineering Research Center of Iran for financially supporting this project. Also, the authors would like to thank Dr. Samaneh Zolghadri from the Department of Biology, Islamic Azad University, Jahrom Branch, Fars province, Iran, for her advices in analyzing the cytotoxicity results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboube Eslami Moghadam.

Ethics declarations

Conflict of interest

It is declared authors have no conflict of interest in cooperation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3892 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahiminezhad, A., Eslami Moghadam, M., Divsalar, A. et al. In vitro activity, stability, and lipophilicity changes of cisplatin through substitution of different amine ligands. J IRAN CHEM SOC 19, 2749–2768 (2022). https://doi.org/10.1007/s13738-022-02491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02491-1

Keywords

Navigation