Skip to main content
Log in

Plasmon-induced charge separation by Ag nanoparticles between titanium dioxide and MWCNTs for natural sunlight-driven photocatalysis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Developing low-cost and high-performance photocatalysts is a crucial factor in pollutants treatment processes. This study reports the UV light-assisted synthesis of a heterojunction nanocomposite TiO2/Ag0/CNTs as an efficient catalyst for degradation of Acid Orange 7 (AO7) under visible illumination. The rate constant Kobs of TiO2/Ag0/CNTs was about four times higher than that of the pristine TiO2. The superior photocatalytic behavior of TiO2/Ag0/CNTs heterojunction could be ascribed to the positive synergetic effects of the localized surface plasmonic resonance of metallic Ag0 nanoparticles, increased reaction active sites, and improved photogenerated charge separation due to the effective electron transfer processes between TiO2/Ag0 pair and MWCNTs. It was also found that superoxide radicals played the predominant role in the photocatalytic degradation of AO7. This study provides new insights for designing inexpensive ternary photocatalysts with interfacial nanojunctions and multilevel electron transfer for practical application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are included in this article and available from the corresponding author on reasonable request.

Abbreviations

MWCNTs:

Multi-walled carbon nanotubes

TA:

TiO2/Ag

TAM:

TiO2/Ag@MWCNTs

References

  1. R. Atchudan, T.N.J.I. Edison, S. Perumal, M. Shanmugam, Y.R. Lee, Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. J. Photochem. Photobiol. A 337, 100–111 (2017)

    Article  CAS  Google Scholar 

  2. C. Racles, M.-F. Zaltariov, M. Iacob, M. Silion, M. Avadanei, A. Bargan, Siloxane-based metal–organic frameworks with remarkable catalytic activity in mild environmental photodegradation of azo dyes. Appl. Catal. B 205, 78–92 (2017)

    Article  CAS  Google Scholar 

  3. T. Senasu, K. Hemavibool, S. Nanan, Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation. RSC Adv. 8, 22592–22605 (2018)

    Article  CAS  Google Scholar 

  4. M. Karimi-Nazarabad, H. Ahmadzadeh, E.K. Goharshadi, Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Sol. Energy 227, 426–437 (2021)

    Article  CAS  Google Scholar 

  5. M. Karimi-Nazarabad, E.K. Goharshadi, R. Mehrkhah, M. Davardoostmanesh, Highly efficient clean water production: Reduced graphene oxide/graphitic carbon nitride/wood. Sep. Purif. Technol. 279, 119788 (2021)

    Article  CAS  Google Scholar 

  6. M. Yousefi, H. Eshghi, M. Karimi-Nazarabad, A. Farhadipour, P 5 W 30/gC 3 N 4 heterojunction thin film with improved photoelectrochemical performance for solar water splitting. New J. Chem. 44, 20470–20478 (2020)

    Article  CAS  Google Scholar 

  7. M.-C. Rosu, M. Coros, F. Pogacean, L. Magerusan, C. Socaci, A. Turza, S. Pruneanu, Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sci. 70, 13–20 (2017)

    Article  CAS  Google Scholar 

  8. L. Mais, A. Vacca, M. Mascia, E.M. Usai, S. Tronci, S. Palmas, Experimental study on the optimisation of azo-dyes removal by photo-electrochemical oxidation with TiO2 nanotubes. Chemosphere 248, 125938 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Atarod, Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J. Alloy. Compd. 689, 15–20 (2016)

    Article  CAS  Google Scholar 

  10. Y. Ma, K. Kobayashi, Y. Cao, T. Ohno, Development of visible-light-responsive morphology-controlled brookite TiO2 nanorods by site-selective loading of AuAg bimetallic nanoparticles. Appl. Catal. B 245, 681–690 (2019)

    Article  CAS  Google Scholar 

  11. F. Gonell, A.V. Puga, B. Julian-Lopez, H. García, A. Corma, Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl. Catal. B 180, 263–270 (2016)

    Article  CAS  Google Scholar 

  12. M. Tahir, B. Tahir, N.A.S. Amin, Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B 204, 548–560 (2017)

    Article  CAS  Google Scholar 

  13. A. Karami, Synthesis of TiO 2 nano powder by the sol-gel method and its use as a photocatalyst. J. Iran. Chem. Soc. 7, S154–S160 (2010)

    Article  CAS  Google Scholar 

  14. L.D.O. Pereira, R.V. Lelo, G.C. Coelho, F. Magalhães, Degradation of textile dyes from synthetic and wastewater samples using TiO 2/C/Fe magnetic photocatalyst and TiO 2. J. Iran. Chem. Soc. 16, 2281–2289 (2019)

    Article  CAS  Google Scholar 

  15. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol., C 13, 169–189 (2012)

    Article  CAS  Google Scholar 

  16. M. Joshaghani, D. Yazdani, A.A. Zinatizadeh, Statistical modeling of p-nitrophenol degradation using a response surface methodology (RSM) over nano zero-valent iron-modified Degussa P25-TiO 2/ZnO photocatalyst with persulfate. J. Iran. Chem. Soc. 14, 2449–2456 (2017)

    Article  CAS  Google Scholar 

  17. M. Oftadeh, A. Aghtar, M.N. Esfahani, M. Salavati-Niasari, N. Mir, Fabrication of highly efficient dye-sensitized solar cell and CO 2 reduction photocatalyst using TiO 2 nanoparticles prepared by spin coating-assisted sol–gel method. J. Iran. Chem. Soc. 9, 143–149 (2012)

    Article  CAS  Google Scholar 

  18. A. El Mragui, O. Zegaoui, J.C.E. da Silva, Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials. Chemosphere 266, 128931 (2020)

    Article  PubMed  CAS  Google Scholar 

  19. X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013)

    Article  PubMed  CAS  Google Scholar 

  20. A. Zielińska-Jurek, Progress, challenge, and perspective of bimetallic TiO2-based photocatalysts. J. Nanomater. 2014, 1–17 (2014)

    Article  CAS  Google Scholar 

  21. M.J. Kale, T. Avanesian, P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014)

    Article  CAS  Google Scholar 

  22. V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Tian, T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@ TiO2 core− shell composite clusters under UV− irradiation. J. Am. Chem. Soc. 127, 3928–3934 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. Habibi, A.R. Vartooni, Photodegradation of aromatic amines by Ag-TiO 2 photocatalyst. J. Iran. Chem. Soc. 6, 800–807 (2009)

    Article  CAS  Google Scholar 

  26. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. Habibi, A. Rostami-Vartooni, Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO 2 photocatalyst. J. Iran. Chem. Soc. 6, 578–587 (2009)

    Article  CAS  Google Scholar 

  27. Y. Duan, M. Zhang, L. Wang, F. Wang, L. Yang, X. Li, C. Wang, Plasmonic Ag-TiO2− x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: the role of oxygen vacancies. Appl. Catal. B 204, 67–77 (2017)

    Article  CAS  Google Scholar 

  28. Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, S. Venkateswaran, Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 12, 522–527 (2002)

    Article  CAS  Google Scholar 

  29. I. Tanabe, T. Tatsuma, Plasmonic manipulation of color and morphology of single silver nanospheres. Nano Lett. 12, 5418–5421 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. K.T. Sullivan, C. Wu, N.W. Piekiel, K. Gaskell, M.R. Zachariah, Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products. Combust. Flame 160, 438–446 (2013)

    Article  CAS  Google Scholar 

  31. B.V. Lvov, Kinetics and mechanism of thermal decomposition of silver oxide. Thermochim. Acta 333, 13–19 (1999)

    Article  CAS  Google Scholar 

  32. Y.-C. Her, Y.-C. Lan, W.-C. Hsu, S.-Y. Tsai, The characteristics of reactively sputtered AgOx films prepared at different oxygen flow ratios and its effect on super-resolution near-field properties. Jpn. J. Appl. Phys. 43, 267 (2004)

    Article  CAS  Google Scholar 

  33. E.J. Petersen, L. Zhang, N.T. Mattison, D.M. O’Carroll, A.J. Whelton, N. Uddin, T. Nguyen, Q. Huang, T.B. Henry, R.D. Holbrook, Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 45, 9837–9856 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. B. Louis, N. Krins, M. Faustini, D. Grosso, Understanding crystallization of anatase into binary SiO2/TiO2 sol− gel optical thin films: an in situ thermal ellipsometry analysis. J. Phys. Chem. C 115, 3115–3122 (2011)

    Article  CAS  Google Scholar 

  35. B. Llano, M. Hidalgo, L. Rios, J. Navio, Effect of the type of acid used in the synthesis of titania–silica mixed oxides on their photocatalytic properties. Appl. Catal. B 150, 389–395 (2014)

    Article  CAS  Google Scholar 

  36. Y. Yu, C.Y. Jimmy, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong, Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A 289, 186–196 (2005)

    Article  CAS  Google Scholar 

  37. J. Chen, G. Li, Y. Huang, H. Zhang, H. Zhao, T. An, Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Appl. Catal. B 123, 69–77 (2012)

    Article  CAS  Google Scholar 

  38. Y.-J. Xu, Y. Zhuang, X. Fu, New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange. J. Phys. Chem. C 114, 2669–2676 (2010)

    Article  CAS  Google Scholar 

  39. W. Perry, B. Smith, C. Bulian, J. Busse, C. Macomber, R. Dye, S. Son, Propellants explos pyrotech. Propellants Explos. Pyrotech. 29, 99–105 (2004)

    Article  CAS  Google Scholar 

  40. A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, J.J. Vilatela, Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Appl. Catal. B 179, 574–582 (2015)

    Article  CAS  Google Scholar 

  41. A.L. Luna, F. Matter, M. Schreck, J. Wohlwend, E. Tervoort, C. Colbeau-Justin, M. Niederberger, Monolithic metal-containing TiO2 aerogels assembled from crystalline pre-formed nanoparticles as efficient photocatalysts for H2 generation. Appl. Catal. B: Environ. 267, 118660 (2020)

    Article  CAS  Google Scholar 

  42. X. Xiao, J. Wei, Y. Yang, R. Xiong, C. Pan, J. Shi, Photoreactivity and mechanism of g-C3N4 and Ag Co-modified Bi2WO6 microsphere under visible light irradiation. ACS Sustain. Chem. Eng. 4, 3017–3023 (2016)

    Article  CAS  Google Scholar 

  43. H. Sun, Y. Bai, W. Jin, N. Xu, Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species. Sol. Energy Mater. Sol. Cells 92, 76–83 (2008)

    Article  CAS  Google Scholar 

  44. J. Podporska-Carroll, A. Myles, B. Quilty, D.E. McCormack, R. Fagan, S.J. Hinder, D.D. Dionysiou, S.C. Pillai, Antibacterial properties of F-doped ZnO visible light photocatalyst. J. Hazard. Mater. 324, 39–47 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. R. Yuan, R. Guan, W. Shen, J. Zheng, Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers. J. Colloid Interface Sci. 282, 87–91 (2005)

    Article  CAS  PubMed  Google Scholar 

  46. B. Réti, K. Mogyorósi, A. Dombi, K. Hernádi, Substrate dependent photocatalytic performance of TiO2/MWCNT photocatalysts. Appl. Catal. A 469, 153–158 (2014)

    Article  CAS  Google Scholar 

  47. J. Huang, H. Song, C. Chen, Y. Yang, N. Xu, X. Ji, C. Li, J.-A. You, Facile synthesis of N-doped TiO2 nanoparticles caged in MIL-100 (Fe) for photocatalytic degradation of organic dyes under visible light irradiation. J. Environ. Chem. Eng. 5, 2579–2585 (2017)

    Article  CAS  Google Scholar 

  48. G. Qu, H. Wang, X. Li, T. Wang, Z. Zhang, D. Liang, H. Qiang, Enhanced removal of acid orange II from aqueous solution by V and N co-doping TiO2-MWCNTs/γ-Al2O3 composite photocatalyst induced by pulsed discharge plasma. Water Sci. Technol. 83, 257–270 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. M. Azami, M. Haghighi, S. Allahyari, Sono-precipitation of Ag2CrO4-C composite enhanced by carbon-based materials (AC, GO, CNT and C3N4) and its activity in photocatalytic degradation of acid orange 7 in water. Ultrason. Sonochem. 40, 505–516 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. P. Muthirulan, C.N. Devi, M.M. Sundaram, A green approach to the fabrication of titania–graphene nanocomposites: insights relevant to efficient photodegradation of Acid Orange 7 dye under solar irradiation. Mater. Sci. Semicond. Process. 25, 219–230 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tarbiat Modares University for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Ganjidoust or Ali Reza Mahjoub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Consent was obtained from the participants prior to data collection, whereas no respondent was individually identified in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanieh, A.M., Khavar, A.H.C., Ganjidoust, H. et al. Plasmon-induced charge separation by Ag nanoparticles between titanium dioxide and MWCNTs for natural sunlight-driven photocatalysis. J IRAN CHEM SOC 19, 2297–2309 (2022). https://doi.org/10.1007/s13738-021-02447-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02447-x

Keywords

Navigation