Skip to main content
Log in

Determination of the ionization constants of sulfonylureas in THF–water media by potentiometric titration and RPLC methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, the ionization constants (pKa) of sulfonylurea group antidiabetic drugs (glibenclamide, gliclazide, glimepiride, and glipizide) were calculated, providing significant information about the physicochemical properties of the drugs. Potentiometric titration and reverse-phase liquid chromatography were used to determine the ionization constants in tetrahydrofuran (THF)–water media. The PKPOT and NLREG computer programs were used to evaluate the results. In addition, the aqueous pKa values of the compounds were calculated using the Yasuda–Shedlovsky equation and mole fraction–pKa extrapolation methods. When the potentiometric titration method was used, the aqueous pKa values of glibenclamide, gliclazide, glimepiride, and glipizide were calculated to be 6.002, 6.085, 6.106, and 6.016, respectively, using the Yasuda–Shedlovsky equation, while the mole fraction–pKa extrapolation method gave 6.013, 6.096, 6.117, and 6.027, respectively. On the other hand, when the RPLC method was used, pKa values of 5.489, 5.732, 5.733, and 5.601, respectively, were obtained with the Yasuda–Shedlovsky equation and mole fraction–pKa extrapolation gave 5.499, 5.742, 5.743, and 5.611, respectively. The ionization constants obtained with these methods provide valuable information for researchers studying these active pharmaceutical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. Kecskemeti, Z. Bagi, P. Pacher, I. Posa, E. Kocsis, M. Koltai, Curr. Me. Chem. (2002). https://doi.org/10.2174/0929867023371427

    Article  Google Scholar 

  2. M. Patlak, Faseb J. (2002). https://doi.org/10.1096/fasebj.16.14.1853e

    Article  PubMed  Google Scholar 

  3. G.B. Katzung, S.B. Masters, J.A. Trevor, Basic and Clinical Pharmacology, 11th edn. (McGraw-hill medical company, China, 2009), pp. 1232–1260

    Google Scholar 

  4. F.M. Sroor, S.Y. Abbas, W.M. Basyouni, K.A.M. El-Bayouki, M.F. El-Mansy, H.F. Aly, S.A. Ali, A.F. Arafa, A.A. Haroun, Bioorgan. Chem. (2019). https://doi.org/10.1016/j.bioorg.2019.103290

    Article  Google Scholar 

  5. K.S. Joseph, D.S. Hage, J. Chrom. (2010). https://doi.org/10.1016/j.jchromb.2010.04.019

    Article  Google Scholar 

  6. N. Noyanalpan, Farmasötik ve Medisinal Kimya Ders Kitabi (Ankara üniversitesi eczacilik fakültesi yayinlari, Ankara, 1978), pp. 91–100

    Google Scholar 

  7. E. Fuguet, X. Subirats, C. Ràfols, E. Bosch, M. Rosés, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, ed. by J. Reedijk (Elsevier, 2015), pp. 1–12. https://doi.org/10.1016/B978-0-12-409547-2.11631-2

  8. G. Garrido, M. Rosés, C. Ràfols, E. Bosch, J. Solut. Chem. (2008). https://doi.org/10.1007/s10953-008-9262-6

    Article  Google Scholar 

  9. D.V. Snigur, A.N. Chebotarev, K.V. Bevziuk, J. Appl. Spect. (2018). https://doi.org/10.1007/s10812-018-0605-9

    Article  Google Scholar 

  10. Y.D. Daldal, E.Ç. Demiralay, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.113930

    Article  Google Scholar 

  11. Y.D. Daldal, E.Ç. Demiralay, G. Alsancak, Int. J. Chem. Tech. (2017). https://doi.org/10.32571/ijct.335934

    Article  Google Scholar 

  12. E. Wiedenbeck, D. Gebauer, H. Cölfen, Analy. Chem. (2020). https://doi.org/10.1021/acs.analchem.0c00247

    Article  Google Scholar 

  13. L.Z. Benet, J.E. Goyan, J. Pharma. Sci. (1967). https://doi.org/10.1002/jps.2600560602

    Article  Google Scholar 

  14. H.A. Zayas, A. McCluskey, M.C. Bowyer, C.I. Holdsworth, Anal. Methods (2015). https://doi.org/10.1039/C5AY01673H

    Article  Google Scholar 

  15. A. Kroflic, A. Apelblat, M. Bešter-Rogac, J. Physic. Chem. B (2012). https://doi.org/10.1021/jp211150p

    Article  Google Scholar 

  16. A. Lopalco, J. Douglas, N. Denora, V.J. Stella, J. Pharma. Sci. (2016). https://doi.org/10.1002/jps.24539

    Article  Google Scholar 

  17. L. Vidaud, C. Kugel, G. Boccardi, S. Schmidt, J.Y. Pommier, Int. J. Pharm. (2012). https://doi.org/10.1016/j.ijpharm.2012.07.066

    Article  PubMed  Google Scholar 

  18. C. Horvath, W. Melander, I. Molnár, Anal. Chem. (1977). https://doi.org/10.1021/ac50009a044

    Article  Google Scholar 

  19. E.Ç. Demiralay, G. Alsancak, S.A. Özkan, J. Sep. Sci. (2009). https://doi.org/10.1002/jssc.200900234

    Article  PubMed  Google Scholar 

  20. P. Junjie, D. Zijian, L. Mi, X. Wenwen, Z. Shengyong, H. Yinghui, W. Jianguo, Microchem. J. (2020). https://doi.org/10.1016/j.microc.2019.104324

    Article  Google Scholar 

  21. H.B. Rose, M.M. Wilber, A.S. Bommarius, Int. J. Pharm. (2021). https://doi.org/10.1016/j.ijpharm.2020.120170

    Article  PubMed  Google Scholar 

  22. E. Fuguet, C. Ràfols, E. Bosch, M. Roses, J. Chromatogr. A. (2009). https://doi.org/10.1016/j.chroma.2008.12.090

    Article  PubMed  Google Scholar 

  23. E. Cagigal, L. González, R.M. Alonso, R.M. Jiménez, J. Pharm. Biomed. Anal. (2001). https://doi.org/10.1016/S0731-7085(01)00413-7

    Article  PubMed  Google Scholar 

  24. A.N. Chebotarev, D.V. Snigur, Y.P. Zhukova, K.V. Bevziuk, Y.I. Studenyak, Y.R. Bazel, Russ. J. Gen. Chem. (2017). https://doi.org/10.1134/S1070363217020074

    Article  Google Scholar 

  25. A. Shokrollahi, F. Zarghampour, S. Akbari, A. Salehi, Anal. Methods (2015). https://doi.org/10.1039/C5AY00287G

    Article  Google Scholar 

  26. T.G. Balogh, Á. Tarcsay, G.M. Keserü, J. Pharm. Biomed. Anal. (2012). https://doi.org/10.1016/j.jpba.2012.04.021

    Article  PubMed  Google Scholar 

  27. M. Yasuda, Bull. Chem. Soc. Jpn. (1959). https://doi.org/10.1246/bcsj.32.429

    Article  Google Scholar 

  28. T. Shedlovsky, in Electrolytes, ed. by B. Pesce (Pergamon Press, New York, 1962), pp. 146–151

  29. L. Narasimham, V.D. Barhate, Eur. J. Chem. (2011). https://doi.org/10.5155/eurjchem.2.1.36-46.371

    Article  Google Scholar 

  30. J. Barbosa, D. Barrón, S. Butí, I. Marqués, Polyhedron (1999). https://doi.org/10.1016/S0277-5387(99)00274-0

    Article  Google Scholar 

  31. J. Barbosa, I. Marqués, D. Barrón, V. Sanz-Nebot, Trends Anal. Chem 18, 543–549 (1999)

    Article  CAS  Google Scholar 

  32. J. Barbosa, D. Barrón, S. Butí, Electroanal. Chem. (1999). https://doi.org/10.1002/(SICI)1521-4109(199907)11:9%3c627::AID-ELAN627%3e3.0.CO;2-V

    Article  Google Scholar 

  33. NLREG Nonlinear Regression Analysis and Curve Fitting Program, Version 4.0 http//www.nlreg.com Accessed 20 November 2018

  34. J. Barbosa, D. Barrón, J.L. Beltrán, V.S. Nebot, Anal. Chim. Acta (1995). https://doi.org/10.1016/0003-2670(95)00400-9

    Article  Google Scholar 

  35. A. Avdeef, K.J. Box, J.E.A. Comer, M. Gilges, M. Hadley, C. Hibbert, W. Patterson, K.Y. Tam, J. Pharm. Biomed. Analysis. (1999). https://doi.org/10.1016/S0731-7085(98)00235-0

    Article  Google Scholar 

  36. R. Wrobel, L. Chmurzynski, Anal. Chim. Acta (2000). https://doi.org/10.1016/S0003-2670(99)00737-0

    Article  Google Scholar 

  37. M.A. Kamyabi, J. Anal. Chem. (2009). https://doi.org/10.1134/S1061934809110070

    Article  Google Scholar 

  38. U. Muinasmaa, C. Ràfols, E. Bosch, M. Rosés, Anal. Chim. Acta (1997). https://doi.org/10.1016/S0003-2670(96)00516-8

    Article  Google Scholar 

  39. SPARC Online Calculator, http://archemcalc.com/sparc-web/calc, Accessed 15 November 2018

  40. Advanced Chemistry Development, Inc. (ACD/Labs) https://www.acdlabs.com, Accessed 1 November 2018

  41. Marvin Sketch program, ChemAxon, http://www.chemaxon.com, Accessed 8 November 2018

Download references

Acknowledgements

We gratefully acknowledge Dr. Jose Luis Beltran from the University of Barcelona for his support of the PKPOT and NLREG program. We would also like to thank the Süleyman Demirel University Scientific Research Projects Coordination Unit for financially supporting this work under Project No. 2223-D-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilara Başat Dereli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereli, D.B., Alsancak, A.G. Determination of the ionization constants of sulfonylureas in THF–water media by potentiometric titration and RPLC methods. J IRAN CHEM SOC 19, 1889–1898 (2022). https://doi.org/10.1007/s13738-021-02425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02425-3

Keywords

Navigation