Skip to main content
Log in

Colorimetric assay for visual determination of imidacloprid in water and fruit samples using asparagine modified gold nanoparticles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

High precision and rapid detection of pesticides are one of the most imperative requirements today to overcome environmental and food safety problems. Therefore, here, in this study, we proposed a simple colorimetric sensor for the visual determination of imidacloprid (IMD) using asparagine (Asp)-modified AuNPs. The synthesized Asp-AuNPs were characterized using UV–visible spectroscopy, TEM, FTIR and DLS techniques. The colorimetric detection strategy was based on the significant red-shift in the absorption spectra of Asp-AuNPs (524 nm) to 656 nm with the addition of IMD. The electron-rich (NH2) group on surfaces of Asp-AuNPs act as an excellent colorimetric probe, which induced the aggregation of Asp-AuNPs in the presence of IMD, resulting in a visual colour change of Asp-AuNPs from wine-red to purple-blue. Under optimized conditions, the linear graph was plotted between the absorption ratio at A524/A656 and imidacloprid concentration in the range of 10–1000 µM. The detection limit was found to be 1.09 µM. The Asp-AuNPs showed a good response for visual detection of IMD in the presence of other common interfering pesticides and metal ions. Furthermore, to assess the applicability of the proposed method, real (tap and drinking) water and apple samples were analysed using Asp-AuNPs, the obtained findings demonstrated that the devised method has great potential for the determination of IMD in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Singh, N. Kumar, R. Mehra, H. Kumar, V.P. Singh, Trends Environ. Anal. Chem. (2020). https://doi.org/10.1016/j.teac.2020.e00086

    Article  Google Scholar 

  2. N. Chen, H. Liu, Y. Zhang, Z. Zhou, W. Fan, G. Yu, Z. Shen, A. Wu, Sens. Actuators B Chem. (2018). https://doi.org/10.1016/j.snb.2017.09.134

    Article  PubMed  PubMed Central  Google Scholar 

  3. P. Chawla, A. Najda, A. Bains, R. Nurzyńska-Wierdak, R. Kaushik, M.M. Tosif, Nanomaterials (2021). https://doi.org/10.3390/nano11051308

    Article  PubMed  PubMed Central  Google Scholar 

  4. N. Kumar, R. Seth, H. Kumar, Anal. Biochem. (2014). https://doi.org/10.1016/j.ab.2014.04.002

    Article  PubMed  Google Scholar 

  5. R. Singh, P. Thakur, A. Thakur, H. Kumar, J.V. Rohit, N. Kumar, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1715382

    Article  Google Scholar 

  6. P. Chawla, N. Kumar, R. Kaushik, S.B. Dhull, J. Food Sci. Technol. (2019). https://doi.org/10.1007/s13197-019-03988-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Prashar, S. Sharma, N. Kumar, R. Kaushik, P. Chawla, J. Am. Coll. Nutr. (2021). https://doi.org/10.1080/07315724.2021.1879693

    Article  PubMed  Google Scholar 

  8. R. Singh, R. Mehra, A. Walia, S. Gupta, H. Kumar, A. Thakur, N. Kumar, Int. J. Environ. Anal. Chem. (2021). https://doi.org/10.1080/03067319.2021.1873315

    Article  Google Scholar 

  9. P. Du, M. Jin, C. Zhang, G. Chen, X. Cui, Y. Zhang, Y. Zhang, P. Zou, Z. Jiang, X. Cao, Y. She, Sens. Actuators B Chem. (2018). https://doi.org/10.1016/j.snb.2017.10.075

  10. D. Li, S. Wang, L. Wang, H. Zhang, J. Hu, Anal. Bioanal. Chem. (2019). https://doi.org/10.1007/s00216-019-01703-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Z. Wang, Y. Huang, D. Wang, L. Sun, C. Dong, L. Fang, Y. Zhang, A. Wu, Anal. Methods. (2018). https://doi.org/10.1039/C8AY00137E

    Article  Google Scholar 

  12. R. Bala, R.K. Sharma, N. Wangoo, Sens. Actuators B Chem. (2015). https://doi.org/10.1016/j.snb.2014.12.123

    Article  Google Scholar 

  13. N. Fahimi-Kashani, M.R. Hormozi-Nezhad, Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2020.128580

    Article  Google Scholar 

  14. Q. Tu, T. Yang, Y. Qu, S. Gao, Z. Zhang, Q. Zhang, Y. Wang, J. Wang, L. He, Analyst (2019). https://doi.org/10.1039/C8AN02473A

    Article  PubMed  Google Scholar 

  15. G. Liu, S. Wang, X. Yang, T. Li, Y. She, J. Wang, P. Zou, F. Jin, M. Jin, H. Shao, Anal. Methods. (2016). https://doi.org/10.1039/C5AY02810H

    Article  Google Scholar 

  16. P. Chawla, R. Kaushik, V.S. Swaraj, N. Kumar, Environ. Nanotechnol. Monit. Manag. (2018). https://doi.org/10.1016/j.enmm.2018.07.013

    Article  Google Scholar 

  17. R. Singh, N. Kumar, J. Nano-Electron. Phys. (2021). https://doi.org/10.21272/jnep.13(2).02015

  18. N. Kumar, H. Kumar, B. Mann, R. Seth. Spectrochim. Acta, Part A (2016). https://doi.org/10.1016/j.saa.2015.11.028

    Article  Google Scholar 

  19. T.J. Wood, D. Goulson, Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/s11356-017-9240-x

    Article  Google Scholar 

  20. L.W. Pisa, V. Amaral-Rogers, L.P. Belzunces, J.M. Bonmatin, C.A. Downs, D. Goulson, D.P. Kreutzweiser, C. Krupke, M. Liess, M. McField, C.A. Morrissey, Environ. Sci. Pollut. Res. (2015). https://doi.org/10.1007/s11356-014-3471-x

    Article  Google Scholar 

  21. K.A. Sumon, A.K. Ritika, E.T. Peeters, H. Rashid, R.H. Bosma, M.S. Rahman, M.K. Fatema, P.J. VandenBrink, Environ. Pollut. (2018). https://doi.org/10.1016/j.envpol.2018.01.102

  22. A. Schaafsma, V. Limay-Rios, T. Baute, J. Smith, Y. Xue, PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0118139

    Article  PubMed  PubMed Central  Google Scholar 

  23. X. Zhang, Z. Sun, Z. Cui, H. Sens, Actuators B Chem. (2014). https://doi.org/10.1016/j.snb.2013.09.101

    Article  Google Scholar 

  24. S. Babazadeh, P.A. Moghaddam, S. Keshipour, K. Mollazade, Sci. Rep (2020). https://doi.org/10.1038/s41598-020-71349-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. A.H. Abd Allah, N. Desneux, Y. Fan, P. Han, A. Ali, D. Song, X.W. Gao, Entomol. Gen (2018). https://doi.org/10.1127/entomologia/2017/0471

  26. Y.C. Zhu, J. Yao, R.J. Adamczyk, R. Luttrell, PloSone. (2017). https://doi.org/10.1371/journal.pone.0176837

    Article  Google Scholar 

  27. C. Giorio, A. Safer, F. Sánchez-Bayo, A. Tapparo, A. Lentola, V. Girolami, M.B. Van Lexmond, J.M. Bonmatin, Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/s11356-017-0394-3

  28. F. Sánchez-Bayo, K. Goka, D. Hayasaka, Front. Environ. Sci. (2016). https://doi.org/10.3389/fenvs.2016.00071 

  29. S.T. Narenderan, S.N. Meyyanathan, B. Babu, Food Res. Int. (2020). https://doi.org/10.1016/j.foodres.2020.109141

    Article  PubMed  Google Scholar 

  30. Y. Picó, Curr. Opin. Environ. Sci. Health. (2020). https://doi.org/10.1016/j.coesh.2020.07.002

    Article  Google Scholar 

  31. D.J. Costa, J.C. Santos, F.A. Sanches-Brandao, W.F. Ribeiro, G.R. Salazar-Banda, M.C. Araujo, J. Electroanal. Chem. Interfacial Electrochem. (2017). https://doi.org/10.1016/j.jelechem.2017.02.036

    Article  Google Scholar 

  32. J. Kaur, P.K. Singh, Phys. Chem. Chem. Phys (2020). https://doi.org/10.1039/D0CP01647K

    Article  PubMed  Google Scholar 

  33. AI Yahyai, H.A. AI-lawati, J. Lumin. (2020). https://doi.org/10.1002/bio.3947

  34. V.D. Chavada, N.M. Bhatt, M. Sanyal, P.S. Shrivastav, J. Ind. Eng. Chem. (2020). https://doi.org/10.1016/j.jiec.2019.12.029

    Article  Google Scholar 

  35. J.V. Rohit, J.N. Solanki, S.K. Kailasa, Sens. Actuators B Chem. (2014). https://doi.org/10.1016/j.snb.2014.04.043

    Article  Google Scholar 

  36. J.V. Rohit, S.K. Kailasa, Sens. Actuators B Chem. (2017). https://doi.org/10.1016/j.snb.2017.02.007

    Article  Google Scholar 

  37. J.Y. Kang, Y.J. Zhang, X. Li, C. Dong, H.Y. Liu, L.J. Miao, P.J. Low, Z.X. Gao, Anal. Methods (2018). https://doi.org/10.1039/C7AY02658G

    Article  Google Scholar 

  38. N. Ratnarathorn, O. Chailapakul, W. Dungchai, Talanta (2015). https://doi.org/10.1016/j.talanta.2014.10.024

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Science and Technology-Science for Equity, Empowerment and Development Division (DST-SEED), Government of India (Project No: SP/YO/097/2016) for providing financial assistance. Testing facilities provided by the MNIT, Jaipur India is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Kumar, N., Mehra, R. et al. Colorimetric assay for visual determination of imidacloprid in water and fruit samples using asparagine modified gold nanoparticles. J IRAN CHEM SOC 19, 599–607 (2022). https://doi.org/10.1007/s13738-021-02334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02334-5

Keywords

Navigation