Skip to main content
Log in

Exploring the functional changes and binding mechanism of bovine liver catalase in the presence of Schiff base complexes. Comprehensive spectroscopic studies

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nowadays, efforts to synthesize new compounds with medicinal activity, including antioxidant properties, have increased because they are delay, prevent, or removes oxidative damage to target cells. The interaction of these compounds with biological molecules like catalase (as an important antioxidant enzyme) is very important in the process of improving the properties of them. So, in this research two mixed-ligand complexes with divalent ion Zn containing novel Schiff base ligand of 4-pyridylimine-1,2-diacetylmonoxime as a primary ligand and 2,2-Bipyridine (bpy, in complex a) and 1,10-phenanthroline (phen, in complex b) as secondary ligands were synthesized and successfully characterized using various spectrochemical techniques. The antioxidant capacity of the synthesized complexes was studied in vitro by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method. Results revealed that the synthesized complexes presented moderate antioxidant activity compared to vitamin C (IC50(Complex a) = 0.55 mol L−1, IC50(Complex b) = 0.63 mol L−1, IC50(Vit C) = 0.045 mol L−1). Biophysical techniques were used to study the binding of these complexes with bovine liver catalase (BLC), as an antioxidant model protein. The trial findings showed the interaction between Schiff base complexes and BLC with a relatively strong binding affinity (Kb = 2.0 × 105 M−1 for complex a and 0.73 × 105 M−1 for complex b at 310 K). An intense fluorescence quenching of enzyme through a static quenching mechanism was occurred due to the binding of both complexes to BLC. Hydrogen bonds and van der Waals forces in both examined systems were the main stabilizing forces in the development of drug-protein complex. The secondary structure of BLC was changed in the presence of Zn complexes; decreased α-helix and increased β-sheet contents confirmed the protein instability during the interaction. Considering that the most important structural difference between a and b is in their secondary ligands, it can be concluded that the presence phen ligand compared to bpy leads to more interactions as well as more changes in enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Wang, K.-Z. Tang, W.-S. Liu, Y. Tang, M.-Y. Tan, Preparation, crystal structure and luminescent properties of the (6, 3) type network supramolecular lanthanide picrate complexes with 2, 2′-[(1, 2-naphthalene) bis (oxy)] bis [N-(phenylmethyl)] acetamide. J. Solid State Chem. 182(11), 3118–3124 (2009)

    Article  CAS  Google Scholar 

  2. P. Das, W. Linert, Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki-Miyaura reaction. Coord. Chem. Rev. 311, 1–23 (2016)

    Article  CAS  Google Scholar 

  3. K. Maher, S. Mohammed, Metal complexes of Schiff base derived from salicylaldehyde—a review. Int. J. Curr. Res. Rev. 7(2), 6 (2015)

    CAS  Google Scholar 

  4. A.O. Sobola, G.M. Watkins, B. Van Brecht, Synthesis, characterization and antimicrobial activity of copper (II) complexes of some ortho-substituted aniline Schiff bases; crystal structure of bis (2-methoxy-6-imino) methylphenol copper (II) complex. S. Afr. J. Chem. 67(1), 45–51 (2014)

    Google Scholar 

  5. S. Shahraki, M.H. Majd, A. Heydari, Novel tetradentate Schiff base zinc (II) complex as a potential antioxidant and cancer chemotherapeutic agent: insights from the photophysical and computational approach. J. Mol. Struct. 1177, 536–544 (2019)

    Article  CAS  Google Scholar 

  6. S. Shahraki, H.S. Delarami, Magnetic chitosan-(d-glucosimine methyl) benzaldehyde Schiff base for Pb+ 2 ion removal. Exp. Theor. Methods Carbohydr. Polym. 200, 211–220 (2018)

    Article  CAS  Google Scholar 

  7. F. Shiri, S. Shahraki, S. Shahriari, Mechanistic understanding and binding analysis of a novel Schiff base palladium (II) complex with β-lactoglobulin and human serum albumin. J. Mol. Liq. 262, 218–229 (2018)

    Article  CAS  Google Scholar 

  8. L. Chen, J. Zhang, Y. Zhu, Y. Zhang, Interaction of chromium (III) or chromium (VI) with catalase and its effect on the structure and function of catalase: an in vitro study. Food Chem. 244, 378–385 (2018)

    Article  CAS  Google Scholar 

  9. D. Majumder, A. Das, C. Saha, Catalase inhibition an anti cancer property of flavonoids: a kinetic and structural evaluation. Int. J. Biol. Macromol. 104, 929–935 (2017)

    Article  CAS  Google Scholar 

  10. M. Xu, Z. Cui, L. Zhao, S. Hu, W. Zong, R. Liu, Characterizing the binding interactions of PFOA and PFOS with catalase at the molecular level. Chemosphere 203, 360–367 (2018)

    Article  CAS  Google Scholar 

  11. S. Shahraki, M. Saeidifar, H.S. Delarami, H. Kazemzadeh, Molecular docking and inhibitory effects of a novel cytotoxic agent with bovine liver catalase. J. Mol. Struct. 1205, 127590 (2020)

    Article  CAS  Google Scholar 

  12. R. Ghobadi, A. Divsalar, A.R. Harifi-Mood, A.A. Saboury, M. Eslami-Moghadam, How a promising anti-cancer derivative of palladium consisting phen-imidazole ligand affects bovine liver catalase functionality. J. Photochem. Photobiol. A 364, 288–296 (2018)

    Article  CAS  Google Scholar 

  13. J. Krych-Madej, L. Gebicka, Interactions of nitrite with catalase: enzyme activity and reaction kinetics studies. J. Inorg. Biochem. 171, 10–17 (2017)

    Article  CAS  Google Scholar 

  14. A. Gholamian, A. Divsalar, M. Saiedifar, B. Ghalandari, A.A. Saboury, B. Koohshekan, Generation of reactive oxygen species via inhibition of liver catalase by oxalli-palladium: a spectroscopic and docking study. Process Biochem. 52, 165–173 (2017)

    Article  CAS  Google Scholar 

  15. B. Koohshekan, A. Divsalar, M. Saiedifar, A. Saboury, B. Ghalandari, A. Gholamian, A. Seyedarabi, Protective effects of aspirin on the function of bovine liver catalase: a spectroscopy and molecular docking study. J. Mol. Liq. 218, 8–15 (2016)

    Article  CAS  Google Scholar 

  16. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer (2013)

  17. S. Shahraki, Z. Razmara, F. Shiri, A paramagnetic oxalato-bridged binuclear copper (II) complex as an effective catalase inhibitor. Spectroscopic and molecular docking studies. J. Mol. Struct. 1208, 127865 (2020)

    Article  CAS  Google Scholar 

  18. I. Parejo, C. Codina, C. Petrakis, P. Kefalas, Evaluation of scavenging activity assessed by Co (II)/EDTA-induced luminol chemiluminescence and DPPH·(2, 2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods 44(3), 507–512 (2000)

    Article  CAS  Google Scholar 

  19. F. Dimiza, S. Fountoulaki, A.N. Papadopoulos, C.A. Kontogiorgis, V. Tangoulis, C.P. Raptopoulou, V. Psycharis, A. Terzis, D.P. Kessissoglou, G. Psomas, Non-steroidal antiinflammatory drug–copper (II) complexes: structure and biological perspectives. Dalton Trans. 40(34), 8555–8568 (2011)

    Article  CAS  Google Scholar 

  20. C. Kontogiorgis, D. Hadjipavlou-Litina, Biological evaluation of several coumarin derivatives designed as possible anti-inflammatory/antioxidant agents. J. Enzyme Inhib. Med. Chem. 18(1), 63–69 (2003)

    Article  CAS  Google Scholar 

  21. D. Singh, V. Malik, K. Kumar, C. Sharma, K. Aneja, Macrocyclic metal complexes derived from 2, 6-diaminopyridine and isatin with their antibacterial and spectroscopic studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 76(1), 45–49 (2010)

    Article  CAS  Google Scholar 

  22. Z.H. Chohan, A. Munawar, C.T. Supuran, Transition metal ion complexes of Schiff-bases. Synth. Charact. Antibact. Prop. Metal Based Drugs 8(3), 137–143 (2001)

    Article  CAS  Google Scholar 

  23. A.P. Rebolledo, G.M. de Lima, L.N. Gambi, N.L. Speziali, D.F. Maia, C.B. Pinheiro, J.D. Ardisson, M.E. Cortés, H. Beraldo, Tin (IV) complexes of 2-benzoylpyridine N (4)-phenyl-thiosemicarbazone: spectral characterization, structural studies and antifungal activity. Appl. Organomet. Chem. 17(12), 945–951 (2003)

    Article  CAS  Google Scholar 

  24. T.N. Sorrell, C. O’Connor, O.P. Anderson, J.H. Reibenspies, Synthesis and characterization of phenolate-bridge copper dimers with a copper-copper separation of > 3.5. ANG Models for the active site of oxidized hemocyanin derivatives. J. Am. Chem. Soc. 107(14), 4199–4206 (1985)

    Article  CAS  Google Scholar 

  25. M.F. Iskander, L. El-Sayed, N.M. Salem, R. Werner, W. Haase, Synthesis, characterization and magnetochemical studies of dicopper (II) complexes derived from bis (N-salicylidene) dicarboxylic acid dihydrazides. J. Coord. Chem. 58(2), 125–139 (2005)

    Article  CAS  Google Scholar 

  26. H. Kabeer, S. Hanif, A. Arsalan, S. Asmat, H. Younus, M. Shakir, Structural-dependent N, O-donor imine-appended Cu (II)/Zn (II) complexes: synthesis, spectral, and in vitro pharmacological assessment, ACS Omega (2020)

  27. H. Keypour, M. Aidi, M. Mahmoudabadi, R. Karamian, M. Asadbegy, R.W. Gable, Synthesis, X-ray crystal structural, antioxidant and antibacterial studies of new Cu (II) macroacyclic Schiff base complex with a ligand containing homopiperazine moiety. J. Mol. Struct. 1198, 126666 (2019)

    Article  CAS  Google Scholar 

  28. A.M. Pisoschi, A. Pop, C. Cimpeanu, G. Predoi, Antioxidant capacity determination in plants and plant-derived products: A review. Oxid. Med. Cell. Longev. 2016, 1–36 (2016)

    Article  Google Scholar 

  29. J. Krych, L. Gebicka, Catalase is inhibited by flavonoids. Int. J. Biol. Macromol. 58, 148–153 (2013)

    Article  CAS  Google Scholar 

  30. C.D. Putnam, A.S. Arvai, Y. Bourne, J.A. Tainer, Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism1. J. Mol. Biol. 296(1), 295–309 (2000)

    Article  CAS  Google Scholar 

  31. D. Wu, J. Wang, D. Liu, Y. Zhang, X. Hu, Computational and spectroscopic analysis of interaction between food colorant citrus red 2 and human serum albumin. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  32. R. Yekta, G. Dehghan, S. Rashtbari, N. Sheibani, A.A. Moosavi-Movahedi, Activation of catalase by pioglitazone: multiple spectroscopic methods combined with molecular docking studies. J. Mol. Recognit. 30(12), e2648 (2017)

    Article  Google Scholar 

  33. R. Ghobadi, A. Divsalar, A.R. Harifi-Mood, A.A. Saboury, Spectroscopic investigation of Bovine Liver Catalase interactions with a novel phen-imidazole derivative of platinum. J. Biomol. Struct. Dyn. 36(3), 656–662 (2018)

    Article  CAS  Google Scholar 

  34. M. Bogdan, A. Pirnau, C. Floare, C. Bugeac, Binding interaction of indomethacin with human serum albumin. J. Pharm. Biomed. Anal. 47(4–5), 981–984 (2008)

    Article  CAS  Google Scholar 

  35. Z. Sun, H. Xu, Y. Cao, F. Wang, W. Mi, Elucidating the interaction of propofol and serum albumin by spectroscopic and docking methods. J. Mol. Liq. 219, 405–410 (2016)

    Article  CAS  Google Scholar 

  36. I. Singh, V. Luxami, K. Paul, Spectroscopy and molecular docking approach for investigation on the binding of nocodazole to human serum albumin, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118289 (2020)

  37. J. Liu, J. Tian, W. He, J. Xie, Z. Hu, X. Chen, Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin. J. Pharm. Biomed. Anal. 35(3), 671–677 (2004)

    Article  CAS  Google Scholar 

  38. R. Zhang, Q. Wu, R. Liu, Characterizing the binding interaction between ultrafine carbon black (UFCB) and catalase: electron microscopy and spectroscopic analysis. RSC Adv. 7(67), 42549–42558 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by University of Zabol (Grant No. UOZGR-9618-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Mansouri-Torshizi or Somaye Shahraki.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, H., Mansouri-Torshizi, H. & Shahraki, S. Exploring the functional changes and binding mechanism of bovine liver catalase in the presence of Schiff base complexes. Comprehensive spectroscopic studies. J IRAN CHEM SOC 18, 3281–3294 (2021). https://doi.org/10.1007/s13738-021-02266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02266-0

Keywords

Navigation