Skip to main content

Advertisement

Log in

Amino acids adsorption onto the (111) surface of cubic zirconia: a density functional theory study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The adsorption of six amino acids onto (111) surface of cubic ZrO2 was theoretically investigated using density functional theory (DFT). DFT calculations with D3 dispersion correction were carried out with the PBE exchange–correlation functional. Mechanism, molecular adsorption structures, and energies were calculated. The (111) surface of cubic ZrO2 was modeled using a slab with 9 atomic layers (81 atoms). The slab thickness was 7.3 Å, and a vacuum separation of 12 Å was used with periodic boundary conditions. The results showed that the order of the molecular adsorption energies is ASP > HYP > GLY > ALA > LYS > PRO. Furthermore, adsorption of amino acids on the zirconia surface showed complete hydrogen transfer from GLY, ALA, HYP, and ASP to the surface. For LYS and PRO, hydrogen transfer does not occur. Topological analysis of the electron localization function (ELF) was applied to study the nature of the molecule-surface interactions. It was found that the dissociation of molecules and strong chemical bonds of adsorbed atoms to surface oxygen atoms play an important role in the adsorption mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Shahzad, R. Ahmadi, F. Adhami, J. Najafpour, Eurasian Chem. Commun. 2, 162 (2020). https://doi.org/10.33945/SAMI/ECC.2020.2.1

    Article  CAS  Google Scholar 

  2. R. Faramarzi, M. Falahati, M. Mirzaei, Adv. J. Sci. Eng. 1, 62 (2020). https://doi.org/10.22034/AJSE.2012062

    Article  Google Scholar 

  3. M. Afshar, R.R. Khojasteh, R. Ahmadi, Eurasian Chem. Commun. 2, 595 (2020). https://doi.org/10.33945/SAMI/ECC.2020.5.5

    Article  CAS  Google Scholar 

  4. M. Mirzaei, M. Yousefi, Superlattices Microstruct. 52, 612 (2012). https://doi.org/10.1016/j.spmi.2012.06.027

    Article  CAS  Google Scholar 

  5. H. Behzadi, N.L. Hadipour, M. Mirzaei, Biophys. Chem. 125, 179 (2007). https://doi.org/10.1016/j.bpc.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  6. J. Pryjmaková, M. Kaimlová, T. Hubáček, V. Švorčík, J. Siegel, Int. J. Mol. Sci. 21(7), 2521 (2020). https://doi.org/10.3390/ijms21072521

    Article  CAS  PubMed Central  Google Scholar 

  7. K. Parratt, N. Yao, Nanomaterials (Basel) 3(2), 242 (2013). https://doi.org/10.3390/nano3020242

    Article  CAS  Google Scholar 

  8. M. Vert, Y. Doi, K. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo, F. Schué, Pure Appl. Chem. 84, 377 (2012). https://doi.org/10.1351/PAC-REC-10-12-04

    Article  CAS  Google Scholar 

  9. C.J. Wilson, R.E. Clegg, D.I. Leavesley, M.J. Pearcy, Tissue Eng. 11, 1 (2005). https://doi.org/10.1089/ten.2005.11.1

    Article  CAS  PubMed  Google Scholar 

  10. F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, J. Geis-Gerstorfer, Acta Biomater. 10, 2894 (2014). https://doi.org/10.1016/j.actbio.2014.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Inoue, K. Matsuzaka, Interface Oral Health Science, (Springer, Tokyo, 2014), p. 33. https://doi.org/10.1007/978-4-431-55192-8_3

  12. L. Vroman, A.L. Adams, G.C. Fischer, P.C. Munoz, Blood 55, 156 (1980). https://doi.org/10.1182/blood.V55.1.156.156

    Article  CAS  PubMed  Google Scholar 

  13. R.F. Sabirianov, A. Rubinstein, F. Namavar, Phys. Chem. Chem. Phys. 13, 6597 (2011). https://doi.org/10.1039/C0CP02389B

    Article  CAS  PubMed  Google Scholar 

  14. S. Gupta, J. Dent. Implants Denture. 1, 113 (2015). https://doi.org/10.4172/2572-4835.1000113

    Article  Google Scholar 

  15. S.H. An, T. Matsumoto, H. Miyajima, A. Nakahira, K.H. Kim, S. Imazato, Dent. Mater. 28, 1221 (2012). https://doi.org/10.1016/j.dental.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  16. W. Guocheng, L. Xuanyong, D. Chuanxian, in 3rd International Nanoelectronics Conference (INEC), (IEEE, Hong Kong, 2010), p. 844. https://doi.org/10.1109/INEC.2010.5425174

  17. W. Guocheng, M. Fanhao, D. Chuanxian, P.K. Chu, L. Xuanyong, Acta Biomater. 6, 990 (2010). https://doi.org/10.1016/j.actbio.2009.09.021

    Article  CAS  Google Scholar 

  18. S. Jalili, M. Keshavarz, Comp. Theo. Chem. 1173, 112702 (2020). https://doi.org/10.1016/j.comptc.2020.112702

    Article  CAS  Google Scholar 

  19. D.G. Arquès, J.P. Fallot, C.J. Michel, Int. J. Biol. Macromol. 19(2), 131 (1996). https://doi.org/10.1016/0141-8130(96)01115-4

    Article  PubMed  Google Scholar 

  20. H. DLodish, A. Berk, S. L. Zipursky, et al., Molecular Cell Biology. 5th edn. (W. H. Freeman: New York, 2003)

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  23. P. Giannozzi et al., J. Phys.: Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  24. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  25. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  26. S. A. Tolba, K. M. Gameel, B. A. Ali, H. A. Almossalami, N. K. Allam, The DFT+U: Approaches, Accuracy and Applications (InTech Open, Rijeka, 2018). https://doi.org/10.5772/intechopen.72020

  27. S. Grimme, J. Antony, S. Ehrlich, S. Krieg, J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  28. J. Moellmann, S. Grimme, J. Phys. Chem. C 118, 7615 (2014). https://doi.org/10.1021/jp501237c

    Article  CAS  Google Scholar 

  29. T. Risthaus, S. Grimme, J. Chem. Theory Comput. 9, 1580 (2013). https://doi.org/10.1021/ct301081n

    Article  CAS  PubMed  Google Scholar 

  30. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990). https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  31. X. Xia, Computational modelling study of yttria-stabilized zirconia, Phd Thesis (UCL, London, 2010). https://discovery.ucl.ac.uk/id/eprint/20483

  32. A. Cadi-Essadek, A. Roldan, N.H. de Leeuw, J. Phys. Chem. C 119, 6581 (2015). https://doi.org/10.1021/jp512594j

    Article  CAS  Google Scholar 

  33. A. Savin, A.D. Becke, J. Flad, R. Nesper, H. Preuss, H.G. von Schnering, Angew. Chem. Int. Ed. Engl. 30, 409 (1991). https://doi.org/10.1002/anie.199104091

    Article  Google Scholar 

  34. A. Savin, R. Nesper, S. Wengert, T.F. Fassler, Angew. Chem. Int. Ed. Engl. 36(1809), 1809 (1997). https://doi.org/10.1002/anie.199718081

    Article  Google Scholar 

  35. B. Silvi, in The Relevance of the ELF Topological Approach to the Lewis, Kossel, and Langmuir Bond Model, ed by D. Mingos. The Chemical Bond II. Structure and Bonding (Springer, Cham, 2015), p. 213–247. https://doi.org/10.1007/430_2015_185

  36. P. Fuentealba, E. Chamorro, J.C. Santosb, in Chapter 5 Understanding and using the electron localization function. Theoretical Aspects of Chemical Reactivity (Elsevier B.V., 2007), p. 57–85. https://doi.org/10.1016/S1380-7323(07)80006-9

  37. B. Silvi, J. Mol. Struc. 614, 3 (2002). https://doi.org/10.1016/S0022-2860(02)00231-4

    Article  CAS  Google Scholar 

  38. R.J. Gillespie, E.A. Robinson, J. Comput. Chem. 28, 87 (2007). https://doi.org/10.1002/jcc.20545

    Article  CAS  PubMed  Google Scholar 

  39. G.N. Lewis, W.L. Jolly, Valence and the Structure of Atoms and Molecules (The Chemical Catalog Company, New York, 1923), p. 142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifollah Jalili.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, S., Keshavarz, M. Amino acids adsorption onto the (111) surface of cubic zirconia: a density functional theory study. J IRAN CHEM SOC 18, 2801–2806 (2021). https://doi.org/10.1007/s13738-021-02234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02234-8

Keywords

Navigation