Skip to main content
Log in

Preparation and application of highly efficient and reusable TBAPIL@Si(CH2)3@nano-silica-based nano-catalyst for preparation of benzoxanthene derivatives

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Tetrabutylammonium prolinate ionic liquid (TBAPIL) was prepared, and mesoporous silica nanoparticles (NPs) were synthesized. Both of these were linked through propyltriethoxysilane to prepare a reusable catalyst TBAPIL@Si(CH2)3@silica NPs (TBAPILS). The formation of TBAPIL was checked through Fourier-transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. X-ray diffraction analysis confirmed the structure of silica NPs and linking of TBPAIL on it. Transmission electron microscopy proved the flourishing development of silica NPs. Scanning electron microscopy graphs exposed the altering in morphology of silica NPs and TBAPILS. FT-IR analysis also confirmed the formation of TBAPILS catalyst. Moreover, the effectiveness of the TBAPILS was also checked for the synthesis of various derivatives of tetrahydrobenzoxanthenes-11-ones. The formation and structure of obtained compounds were confirmed by FT-IR, elemental analysis, 1HNMR and 13C NMR spectral analysis. The catalyst TBAPILS was found to be used successfully up to five cycles without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Philippot, P. Serp, Concepts in nanocatalysis. Nanomater. Catal. First Ed. (2012). https://doi.org/10.1002/9783527656875.ch1

    Article  Google Scholar 

  2. S. Chaturvedi, P.N. Dave, N.K. Shah, Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 16, 307–325 (2012). https://doi.org/10.1016/j.jscs.2011.01.015

    Article  CAS  Google Scholar 

  3. S.B.Singh, Tandon, P.K., Catalysis : A brief review on Nano-Catalyst Catalysis : A Brief Review on Nano-Catalyst. (2016)

  4. H. Filian, A. Kohzadian, M. Mohammadi, A. Ghorbani-Choghamarani, A. Karami, Pd(0)-guanidine@MCM-41: a very effective catalyst for rapid production of bis (pyrazolyl)methanes. Appl. Organomet. Chem. 34, 42–44 (2020). https://doi.org/10.1002/aoc.5579

    Article  CAS  Google Scholar 

  5. F. Feizpour, M. Jafarpour, A. Rezaeifard, Band gap modification of TiO2 nanoparticles by ascorbic acid-stabilized pd nanoparticles for photocatalytic suzuki-miyaura and ullmann coupling reactions. Catal. Letters. 149, 1595–1610 (2019). https://doi.org/10.1007/s10562-019-02749-z

    Article  CAS  Google Scholar 

  6. A. Agrwal, V. Kasana, [Fesipmim]Cl as highly efficient and reusable catalyst for solventless synthesis of dihydropyridine derivatives through Hantzsch reaction. J. Chem. Sci. (2020). https://doi.org/10.1007/s12039-020-01770-9

    Article  Google Scholar 

  7. M. Nikoorazm, M. Khanmoradi, M. Mohammadi, Guanine-La complex supported onto SBA-15: a novel efficient heterogeneous mesoporous nanocatalyst for one-pot, multi-component Tandem Knoevenagel condensation–Michael addition–cyclization reactions. Appl. Organomet. Chem. 34, 1–18 (2020). https://doi.org/10.1002/aoc.5504

    Article  CAS  Google Scholar 

  8. M. Nikoorazm, M. Mohammadi, M. Khanmoradi, Zirconium@guanine@MCM-41 nanoparticles: an efficient heterogeneous mesoporous nanocatalyst for one-pot, multi-component tandem knoevenagel condensation–michael addition–cyclization reactions. Appl. Organomet. Chem. (2020). https://doi.org/10.1002/aoc.5704

    Article  Google Scholar 

  9. A. Ghorbani-Choghamarani, M. Mohammadi, R.H.E. Hudson, T. Tamoradi, Boehmite@tryptophan-Pd nanoparticles: a new catalyst for C–C bond formation. Appl. Organomet. Chem. 33, 1–11 (2019). https://doi.org/10.1002/aoc.4977

    Article  CAS  Google Scholar 

  10. I.I. Slowing, B.G. Trewyn, S. Giri, V.S.Y. Lin, Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17, 1225–1236 (2007). https://doi.org/10.1002/adfm.200601191

    Article  CAS  Google Scholar 

  11. B. Karimi, D. Zareyee, A high loading sulfonic acid-functionalized ordered nanoporous silica as an efficient and recyclable catalyst for chemoselective deprotection of tert-butyldimethylsilyl ethers. Tetrahedron Lett. 46, 4661–4665 (2005). https://doi.org/10.1016/j.tetlet.2005.04.100

    Article  CAS  Google Scholar 

  12. A.R. Karimi, Z. Alimohammadi, M. Mostafa Amini, Wells-Dawson heteropolyacid supported on silica: a highly efficient catalyst for synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Mol Divers. 14, 635–641 (2010). https://doi.org/10.1007/s11030-009-9197-x

    Article  CAS  PubMed  Google Scholar 

  13. R. Ratti, Ionic liquids: synthesis and applications in catalysis. Adv. Chem. 2014, 1–16 (2014). https://doi.org/10.1155/2014/729842

    Article  CAS  Google Scholar 

  14. T. Welton, Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004). https://doi.org/10.1016/j.ccr.2004.04.015

    Article  CAS  Google Scholar 

  15. J.P. Hallett, T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011). https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  16. N. Ferlin, M. Courty, A.N. Van Nhien, S. Gatard, M. Pour, B. Quilty, M. Ghavre, A. Haiß, K. Kümmerer, N. Gathergood, S. Bouquillon, Tetrabutylammonium prolinate-based ionic liquids: aA combined asymmetric catalysis, antimicrobial toxicity and biodegradation assessment. RSC Adv. 3, 26241–26251 (2013). https://doi.org/10.1039/c3ra43785j

    Article  CAS  Google Scholar 

  17. U.C. Rajesh, D. Divya, D.S. Rawat, Functionalized superparamagnetic Fe3O4as an efficient quasi-homogeneous catalyst for multi-component reactions. RSC Adv. 40, 41323–41330 (2014). https://doi.org/10.1039/c4ra06803c

    Article  Google Scholar 

  18. R. Fareghi-Alamdari, M.N. Niri, H. Hazarkhani, A novel hydrogen-bonded silica-supported acidic ionic liquid: An efficient, recyclable and selective heterogeneous catalyst for the synthesis of diesters. J. Chem. Sci. 130, 1–13 (2018). https://doi.org/10.1007/s12039-018-1454-z

    Article  CAS  Google Scholar 

  19. H.N. Hafez, M.I. Hegab, I.S. Ahmed-Farag, A.B.A. El-Gazzar, A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 18, 4538–4543 (2008). https://doi.org/10.1016/j.bmcl.2008.07.042

    Article  CAS  PubMed  Google Scholar 

  20. N. Hashim, M. Rahmani, M.A. Sukari, A.M. Ali, N.B. Alitheen, R. Go, H.B.M. Ismail, Two new xanthones from Artocarpus obtusus. J. Asian Nat. Prod. Res. 12, 106–112 (2010). https://doi.org/10.1080/10286020903450411

    Article  CAS  PubMed  Google Scholar 

  21. E. Vieira, J. Huwyler, S. Jolidon, F. Knoflach, V. Mutel, J. Wichmann, 9H-Xanthene-9-carboxylic acid [1,2,4]oxadiazol-3-yl- and (2H-tetrazol-5-yl)-amides as potent, orally available mGlu1 receptor enhancers. Bioorg. Med. Chem. Lett. (2005). https://doi.org/10.1016/j.bmcl.2005.05.135

    Article  PubMed  Google Scholar 

  22. F. Zelefack, D. Guilet, N. Fabre, C. Bayet, S. Chevalley, S. Ngouela, B.N. Lenta, A. Valentin, E. Tsamo, M.G. Dijoux-Franca, Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod. 72, 954–957 (2009). https://doi.org/10.1021/np8005953

    Article  CAS  PubMed  Google Scholar 

  23. S.J. Tao, S.H. Guan, W. Wang, Z.Q. Lu, G.T. Chen, N. Sha, Q.X. Yue, X. Liu, D.A. Guo, Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi. J. Nat. Prod. 72, 117–124 (2009). https://doi.org/10.1021/np800460b

    Article  CAS  PubMed  Google Scholar 

  24. S. Chatterjee, M. Iqbal, J.C. Kauer, J.P. Mallamo, S. Senadhi, S. Mallya, D. Bozyczko-Coyne, R. Siman, Xanthene derived potent nonpeptidic inhibitors of recombinant human calpain I. Bioorg. Med. Chem. Lett. 6, 1619–1622 (1996). https://doi.org/10.1016/S0960-894X(96)00286-7

    Article  CAS  Google Scholar 

  25. K. Kikuchi, K. Komatsu, T. Nagano, Zinc sensing for cellular application. Curr. Opin. Chem. Biol. (2004). https://doi.org/10.1016/j.cbpa.2004.02.007

    Article  PubMed  Google Scholar 

  26. A.M. El-Brashy, M. El-Sayed Metwally, F.A. El-Sepai, Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. Farmaco 59, 809–817 (2004). https://doi.org/10.1016/j.farmac.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  27. A. Akbari, A. Hosseini-Nia, Biological evaluation and simple method for the synthesis of tetrahydrobenzo[a]xanthenes-11-one derivatives. J. Saudi Chem. Soc. 21, S7–S11 (2017). https://doi.org/10.1016/j.jscs.2013.09.009

    Article  CAS  Google Scholar 

  28. A. Kumar, S. Sharma, R.A. Maurya, J. Sarkar, Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. J. Comb. Chem. 12, 20–24 (2010). https://doi.org/10.1021/cc900143h

    Article  CAS  PubMed  Google Scholar 

  29. M.K. Schwaebe, T.J. Moran, J.P. Whitten, Total synthesis of psorospermin. Tetrahedron Lett. 46, 827–829 (2005). https://doi.org/10.1016/j.tetlet.2004.12.006

    Article  CAS  Google Scholar 

  30. N. Singh, A.K. Shreshtha, M.S. Thakur, S. Patra, Xanthine scaffold: scope and potential in drug development. Heliyon. 4, e00829 (2018). https://doi.org/10.1016/j.heliyon.2018.e00829

    Article  PubMed  PubMed Central  Google Scholar 

  31. P. Bedi, R. Gupta, T. Pramanik, Synthesis and biological properties of pharmaceutically important xanthones and benzoxanthone analogs: a brief review. Asian J. Pharm. Clin. Res. 11, 12–20 (2018). https://doi.org/10.22159/ajpcr.2018.v11i2.22426

    Article  CAS  Google Scholar 

  32. S.L. Niu, Z.L. Li, F. Ji, G.Y. Liu, N. Zhao, X.Q. Liu, Y.K. Jing, H.M. Hua, Xanthones from the stem bark of Garcinia bracteata with growth inhibitory effects against HL-60 cells. Phytochemistry 77, 280–286 (2012). https://doi.org/10.1016/j.phytochem.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  33. J.M. Khurana, D. Magoo, K. Aggarwal, N. Aggarwal, R. Kumar, C. Srivastava, Synthesis of novel 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-thiones and evaluation of their biocidal effects. Eur. J. Med. Chem. 58, 470–477 (2012). https://doi.org/10.1016/j.ejmech.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  34. J. Liu, Z. Diwu, W.Y. Leung, Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg. Med. Chem. Lett. 11, 2903–2905 (2001). https://doi.org/10.1016/S0960-894X(01)00595-9

    Article  CAS  PubMed  Google Scholar 

  35. R.J. Sarma, J.B. Baruah, One step synthesis of dibenzoxanthenes. Dye. Pigment. 64, 91–92 (2005). https://doi.org/10.1016/j.dyepig.2004.03.010

    Article  CAS  Google Scholar 

  36. A. Banerjee, A.K. Mukherjee, Chemical aspects of santalin as a histological stain. Biotech. Histochem. 56, 83–85 (1981). https://doi.org/10.3109/10520298109067286

    Article  CAS  Google Scholar 

  37. P. Srihari, S.S. Mandal, J.S.S. Reddy, R.S. Rao, J.S. Yadav, Synthesis of 1,8-dioxo-octahydroxanthenes utilizing PMA-SiO2 as an efficient reusable catalyst. Chin. Chem. Lett. 19, 771–774 (2008). https://doi.org/10.1016/j.cclet.2008.05.005

    Article  CAS  Google Scholar 

  38. M.T. Maghsoodlou, S.M. Habibi-Khorassani, Z. Shahkarami, N. Maleki, M. Rostamizadeh, An efficient synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) and 1,8-dioxooctahydroxanthenes using ZnO and ZnO-acetyl chloride. Chin. Chem. Lett. 21, 686–689 (2010). https://doi.org/10.1016/j.cclet.2010.02.005

    Article  CAS  Google Scholar 

  39. X. Fan, X. Hu, X. Zhang, J. Wang, InCl3·4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem. 83, 16–20 (2005). https://doi.org/10.1139/v04-155

    Article  CAS  Google Scholar 

  40. T.-S. Jin, J.-S. Zhang, J.-C. Xiao, A.-Q. Wang, T.-S. Li, Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p -dodecylbenzenesulfonic acid in aqueous media. Synlett (2004). https://doi.org/10.1055/s-2004-820022

    Article  Google Scholar 

  41. F. Rajabi, M. Abdollahi, E.S. Diarjani, M.G. Osmolowsky, O.M. Osmolovskaya, P. Gómez-López, A.R. Puente-Santiago, R. Luque, Solvent-free preparation of 1,8-dioxo-octahydroxanthenes employing iron oxide nanomaterials. Materials 12, 2386 (2019). https://doi.org/10.3390/ma12152386

    Article  CAS  PubMed Central  Google Scholar 

  42. Z. Karimi-Jaberi, S.Z. Abbasi, B. Pooladian, M. Jokar, Efficient, one-pot synthesis of tetrahydrobenzo[a]xanthen-11-ones and dibenzo[a, j]xanthenes using trichloroacetic acid as a solid heterogeneous catalyst under solvent-free conditions. E-Journal Chem. 8, 1895–1899 (2011)

    Article  CAS  Google Scholar 

  43. M. Seyyedhamzeh, P. Mirzaei, A. Bazgir, Solvent-free synthesis of aryl-14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dye. Pigment. 76, 836–839 (2008). https://doi.org/10.1016/j.dyepig.2007.02.001

    Article  CAS  Google Scholar 

  44. J. Li, W. Tang, L. Lu, W. Su, Strontium triflate catalyzed one-pot condensation of β-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds. Tetrahedron Lett. 49, 7117–7120 (2008). https://doi.org/10.1016/j.tetlet.2008.09.129

    Article  CAS  Google Scholar 

  45. N.V. Shitole, S.B. Sapkal, B.B. Shingate, M.S. Shingare, A simple and green synthesis of tetrahydrobenzo[α]-xanthen-11-one using peg-400 as efficient and recyclable reaction media. Bull. Korean Chem. Soc. 32, 35–36 (2011). https://doi.org/10.5012/bkcs.2011.32.1.35

    Article  CAS  Google Scholar 

  46. B.B.F. Mirjalili, A. Bamoniri, N. Salehi, Synthesis of tetrahydrobenzo[a]xanthenes-11-one derivatives in water promoted by Bi(NO3)3·5H2O. Chemija 23, 118–123 (2012)

    CAS  Google Scholar 

  47. S.V. Goswami, P.B. Thorat, S.S. Dhone., S.R. Bhusrae, Phenylboronic acid-catalyzed synthesis of 99-dimethyl-12-phenyl-910- dihydro-8H-benzo[a] xanthen-11(12H)-one derivatives. J. Chem. Pharm. Res. 3, 632–635 (2011).

  48. X.J. Sun, J.F. Zhou, P.S. Zhao, Molecular iodine-catalyzed one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under microwave irradiation. J. Heterocycl. Chem. 48, 1347–1350 (2011). https://doi.org/10.1002/jhet.742

    Article  CAS  Google Scholar 

  49. J.M. Khurana, D. Magoo, p-TSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions. Tetrahedron Lett. 50, 4777–4780 (2009). https://doi.org/10.1016/j.tetlet.2009.06.029

    Article  CAS  Google Scholar 

  50. B. Das, P. Thirupathi, I. Mahender, V.S. Reddy, Y.K. Rao, Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. J. Mol. Catal. A Chem. 247, 233–239 (2006). https://doi.org/10.1016/j.molcata.2005.11.048

    Article  CAS  Google Scholar 

  51. B. Das, P. Thirupathi, K.R. Reddy, B. Ravikanth, L. Nagarapu, An efficient synthesis of 1,8-dioxo-octahydroxanthenes using heterogeneous catalysts. Catal. Commun. 8, 535–538 (2007). https://doi.org/10.1016/j.catcom.2006.02.023

    Article  CAS  Google Scholar 

  52. M. Litschauer, M.A. Neouze, Nanoparticles connected through an ionic liquid-like network. J. Mater. Chem. 18, 640–646 (2008). https://doi.org/10.1039/b713442h

    Article  CAS  Google Scholar 

  53. M. Mahkam, F. Hosseinzadeh, M. Galehassadi, Preparation of ionic liquid functionalized silica nanoparticles for oral drug delivery. J. Biomater. Nanobiotechnol. 03, 391–395 (2012). https://doi.org/10.4236/jbnb.2012.33038

    Article  CAS  Google Scholar 

  54. K. Fukumoto, M. Yoshizawa, H. Ohno, Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 127, 2398–2399 (2005). https://doi.org/10.1021/ja043451i

    Article  CAS  PubMed  Google Scholar 

  55. A. Kumari, B. Kaur, R. Srivastava, R.S. Sangwan, Isolation and immobilization of alkaline protease on mesoporous silica and mesoporous ZSM-5 zeolite materials for improved catalytic properties. Biochem. Biophys. Rep. 2, 108–114 (2015). https://doi.org/10.1016/j.bbrep.2015.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  56. E.I. Jiménez, W.E.V. Narváez, T. Rocha-Rinza, M. Hernández-Rodríguez, Design and application of a bifunctional organocatalyst guided by electron density topological analyses. Catal. Sci. Technol. 7, 4470–4477 (2017). https://doi.org/10.1039/c7cy00430c

    Article  CAS  Google Scholar 

  57. G.C. Nandi, S. Samai, R. Kumar, M.S. Singh, An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron 65, 7129–7134 (2009). https://doi.org/10.1016/j.tet.2009.06.024

    Article  CAS  Google Scholar 

  58. V. Rama, K. Kanagaraj, K. Pitchumani, A multicomponent, solvent-free, one-pot synthesis of benzoxanthenones catalyzed by HY zeolite: Their anti-microbial and cell imaging studies. Tetrahedron Lett. 53, 1018–1024 (2012). https://doi.org/10.1016/j.tetlet.2011.10.143

    Article  CAS  Google Scholar 

  59. Fatahpour, M., Hazeri, N., Maghsoodlou, M.T., Lashkari, M.: Lactic acid: a new application as an efficient catalyst for the green one-pot synthesis of 2-hydroxy-12-aryl-8,9, 10,12-tetrahydrobenzo[a]xanthene-11-one and 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Analogs. Iran. J. Sci. Technol. Trans. A Sci. 42, 533–538 (2018). https://doi.org/10.1007/s40995-016-0064-1.

  60. B. Maleki, M. Gholizadeh, Z. Sepehr, 1,3,5-Trichloro-2,4,6-triazinetrion: a versatile heterocycle for the one-pot synthesis of 14-aryl-or alkyl -14H-dibenzo[a, j]xanthene, 1,8-dioxooctahydroxanthene and 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11- one derivatives under solvent-free conditions. Bull. Korean Chem. Soc. 32, 1697–1702 (2011). https://doi.org/10.5012/bkcs.2011.32.5.1697

    Article  CAS  Google Scholar 

  61. S. Sudha, M.A. Pasha, Ultrasound assisted synthesis of tetrahydrobenzo[c]xanthene-11-ones using CAN as catalyst. Ultrason Sonochem. 19, 994–998 (2012). https://doi.org/10.1016/j.ultsonch.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  62. J. Li, L. Lu, W. Su, A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett. 51, 2434–2437 (2010). https://doi.org/10.1016/j.tetlet.2010.02.149

    Article  CAS  Google Scholar 

  63. H. Wang, X. Ren, Y. Zhang, Z. Zhang, Synthesis 12-aryl or 12-alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by dodecatungstophosphoric acid. J. Braz. Chem. Soc. 20, 1939–1943 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Govind Ballabh Pant University of Agriculture and Technology, Pantnagar (Uttarakhand), India, for providing necessary research facility and KIET Group of Institutions for constant help and support during the research. We would also thank Manish Kumar, IIT Ropar, for providing NMR spectra and ISFAL, Moga, for providing IR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akansha Agrwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2233 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrwal, A., Kumar, V. & Kasana, V. Preparation and application of highly efficient and reusable TBAPIL@Si(CH2)3@nano-silica-based nano-catalyst for preparation of benzoxanthene derivatives. J IRAN CHEM SOC 18, 2583–2595 (2021). https://doi.org/10.1007/s13738-021-02211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02211-1

Keywords

Navigation