Skip to main content
Log in

The effect of PVP application on Mebendazole release from electrospun nanofibers, kinetic study and thermodynamic analysis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Hydatid cyst is a common disease between humans and canines. Mebendazole has been used to treat this disease. Understanding and upgrading Mebendazole drug delivery system are the aim of this study. In this study, nanofibers containing drugs were fabricated by electrospinning. In the structure of nanofibers, polyvinylpyrrolidone (PVP) polymer is used as a drug release controller. In vitro, the living protoscoleces were exposed to nanofibers and the controlling effect of PVP was monitored using live protoscoleces mortality observation. The study found that PVP could be an effective controller of Mebendazole release from nanofiber. The higher the amount of PVP in the nanofibers, the lower the drug release rate and consequently the protoscoleces mortality rate decreases. Based on the statistical results of mortality, protoscoleces showed that PVP had significant controlling effects (p < 0.05). Kinetics and thermodynamic studies of the Mebendazole drug release process from nanofiber were performed. It was found that the release is carried out by the diffusion mechanism and the Sahlin–Peppas model describes the experimental data better than the other models. The thermodynamic parameters indicate that the enthalpy changes (ΔH > 0) are positive and that the process is endothermic. Entropy changes (ΔS < 0) indicate an increase in system disorder during drug release, and Gibbs free energy changes (ΔG > 0) indicate that drug release from the nanofibers is not spontaneous. Nanofibers that have more controller have a larger activation energy (Ea).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.B. Jomaa, N.H. Salem, I. Hmila, S. Saadi, A. Aissaoui, M. Belhadj, A. Chadly, Sudden death and hydatid cyst: a medicolegal study. Legal Med. 40, 17–21 (2019)

    PubMed  Google Scholar 

  2. X. Chen, R. Zhang, T. Aji, Y. Shao, Y. Chen, H. Wen, Novel interventional management of hepatic hydatid cyst with nanosecond pulses on experimental mouse model. Sci. Rep. 7, 1–8 (2017)

    Google Scholar 

  3. S. Soltani, A. Rafiei, Z. Ramezani, M.R. Abbaspour, A. Jelowdar, M. Sagha Kahvaz, Evaluation of the hydatid cyst membrane permeability of albendazole and albendazole sulfoxide-loaded solid lipid nanoparticles. Jundishapur J. Nat. Pharm. Prod. 12, e34723 (2017)

    Google Scholar 

  4. B. Abedi, A.H. Maghsood, B. Khansarinejad, M. Fallah, M. Matini, S. Gholami, A.S. Pagheh, R. Ghasemikhah, Genotyping of Echinococcus granulosus isolates from livestock based on mitochondrial cox1 gene. J. Parasit. Dis. 43, 592–596 (2019)

    PubMed  PubMed Central  Google Scholar 

  5. A.S. Alharbi, Concurrent pulmonary and hepatic hydatid cysts managed with single stage surgery. Radiol. Case Rep. 14, 1306–1310 (2019)

    PubMed  PubMed Central  Google Scholar 

  6. E. Sozuer, M. Akyuz, S. Akbulut, Open surgery for hepatic hydatid disease. Int. Surg. 99, 764–769 (2014)

    PubMed  PubMed Central  Google Scholar 

  7. M.B. Rokni, Echinococcosis/hydatidosis in Iran. Iran. J. Parasitol. 4, 1–16 (2009)

    Google Scholar 

  8. P. Moro, P. Schantz, Echinococcosis: historical landmarks and progress in research and control. Ann. Trop. Med. Parasitol. 100, 703–714 (2006)

    PubMed  CAS  Google Scholar 

  9. S. Ahmadnia, M. Moazeni, S. Mohammadi-Samani, A. Oryan, In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst. Exp. Parasitol. 135, 314–319 (2013)

    PubMed  CAS  Google Scholar 

  10. C. Cretu, R. Codreanu, B. Mastalier, L. Popa, I. Cordos, M. Beuran, D. SteriuIanulle, S. Simion, Albendazole associated to surgery or minimally invasive procedures for hydatid disease—how much and how long. Chirurgia (Bucur) 107, 15–21 (2012)

    CAS  Google Scholar 

  11. S.A. Pawluk, C.A. Roels, K.J. Wilby, M.H. Ensom, A review of pharmacokinetic drug–drug interactions with the anthelmintic medications albendazole and mebendazole. Clin. Pharmacokinet. 54, 371–383 (2015)

    PubMed  CAS  Google Scholar 

  12. R.Y. Bai, V. Staedtke, C.M. Aprhys, G.L. Gallia, G.J. Riggins, Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncology 13, 974–982 (2011)

    PubMed  PubMed Central  CAS  Google Scholar 

  13. M. Moazeni, A. Nazer, In vitro effectiveness of garlic (Allium sativum) extract on scolices of hydatid cyst. World J. Surg. 34, 2677–2681 (2010)

    PubMed  Google Scholar 

  14. S. Fathi, R. Ghasemikhah, R. Mohammadi, F. Tohidi, M. Sharbatkhori, Seroprevalence of hydatidosis in people referring to Reference laboratory of Gorgan, Golestan Province. Iran. J. Parasitol. 14, 436–443 (2019)

    PubMed  PubMed Central  Google Scholar 

  15. H. Mahmoudvand, M.F. Harandi, M. Shakibaie, M.R. Aflatoonian, N. ZiaAli, M.S. Makki, S. Jahanbakhsh, Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int. J. Surg. 12, 399–403 (2014)

    PubMed  Google Scholar 

  16. B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, K. Yao, A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur. Polym. J. 42, 2013–2022 (2006)

    CAS  Google Scholar 

  17. Y. Fu, L. Liu, R. Cheng, W. Cui, ECM decorated electrospun nanofiber for improving bone tissue regeneration. Polymers 10, 272 (2018)

    PubMed Central  Google Scholar 

  18. P. Sasmal, P. Datta, Tranexamic acid-loaded chitosan electrospun nanofibers as drug delivery system for hemorrhage control applications. J. Drug Deliv. Sci. Technol. 52, 559–567 (2019)

    CAS  Google Scholar 

  19. Z. Wei, Z. Liu, X. Wang, S. Long, J. Yang, Smart carrier from electrospun core–shell thermo-sensitive ultrafine fibers for controlled drug release. Eur. Polym. J. 114, 1–10 (2019)

    CAS  Google Scholar 

  20. E. Sapountzi, M. Braiek, J.-F. Chateaux, N. Jaffrezic-Renault, F. Lagarde, Recent advances in electrospun nanofiber interfaces for biosensing devices. Sensors 17, 1887 (2017)

    Google Scholar 

  21. S. Fahimirad, F. Ajalloueian, Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int. J. Pharm. 566, 307–328 (2019)

    PubMed  CAS  Google Scholar 

  22. Q. Wang, S. Liu, L. Fu, Z. Cao, W. Ye, H. Li, P. Guo, X. Zhao, Electrospun γ-Fe2O3 nanofibers as bioelectrochemical sensors for simultaneous determination of small biomolecules. Anal. Chim. Acta 1026, 125–132 (2018)

    PubMed  CAS  Google Scholar 

  23. A. Akhgari, Z. Shakib, S. Sanati, A review on electrospun nanofibers for oral drug delivery. Nanomed. J. 4, 197–207 (2017)

    CAS  Google Scholar 

  24. K. Sasikanth, S. Nama, S. Suresh, B. Brahmaiah, Nanofibers—a new trend in nano drug delivery systems. Pharma Innov. 2, 118 (2013)

    Google Scholar 

  25. M. Eslamian, M. Khorrami, N. Yi, S. Majd, M.R. Abidian, Electrospinning of highly aligned fibers for drug delivery applications. J. Mater. Chem. B 7, 224–232 (2019)

    PubMed  CAS  Google Scholar 

  26. K. Khoshnevisan, H. Maleki, H. Samadian, S. Shahsavari, M.H. Sarrafzadeh, B. Larijani, F.A. Dorkoosh, V. Haghpanah, M.R. Khorramizadeh, Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr. Polym. 198, 131–141 (2018)

    PubMed  CAS  Google Scholar 

  27. J. Weiss, K. Kanjanapongkul, S. Wongsasulak, T. Yoovidhya, Electrospun fibers: fabrication, functionalities and potential food industry applications, in Nanotechnology in the Food, Beverage and Nutraceutical Industries (Woodhead Publishing, 2012), pp. 362–397

  28. Y. Liu, A. Nguyen, A. Allen, J. Zoldan, Y. Huang, J.Y. Chen, Regenerated cellulose micro-nano fiber matrices for transdermal drug release. Mater. Sci. Eng. C 74, 485–492 (2017)

    CAS  Google Scholar 

  29. H.K. Shaikh, R.V. Kshirsagar, S.G. Patil, Mathematical models for drug release characterization: a review. World J. Pharmacy Pharm. Sci. 4, 324–338 (2015)

    CAS  Google Scholar 

  30. G. Singhvi, M. Singh, Review: In vitro drug release characterization models. Int. J. Pharm. Stud. Res. 2, 77–84 (2011)

    Google Scholar 

  31. B. Yalagala, S. Khandelwal, J. Deepika, S. Badhulika, Wirelessly destructible MgO–PVP–graphene composite based flexible transient memristor for security applications. Mater. Sci. Semicond. Process. 104, 104673–104683 (2019)

    CAS  Google Scholar 

  32. R. Mishra, R. Varshney, N. Das, D. Sircar, P. Roy, Synthesis and characterization of gelatin–PVP polymer composite scaffold for potential application in bone tissue engineering. Eur. Polym. J. 119, 155–168 (2019)

    CAS  Google Scholar 

  33. R. Poonguzhali, S.K. Basha, V.S. Kumari, Fabrication of asymmetric nanostarch reinforced Chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. Int. J. Biol. Macromol. 114, 204–213 (2018)

    PubMed  CAS  Google Scholar 

  34. H. Tian, Y. Liang, D. Yang, Y. Sun, Characteristics of PVP–stabilised NZVI and application to dechlorination of soil–sorbed TCE with ionic surfactant. Chemosphere 239, 124807–124815 (2020)

    PubMed  CAS  Google Scholar 

  35. P. Costa, J.M.S. Lobo, Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13, 123–133 (2001)

    PubMed  CAS  Google Scholar 

  36. Y. Zhang, M. Huo, J. Zhou, A. Zou, W. Li, C. Yao, S. Xie, DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 12, 263–271 (2010)

    PubMed  PubMed Central  Google Scholar 

  37. M.C.L.C. Freire, F. Alexandrino, H.R. Marcelino, P.H.D.S. Picciani, K.G.D.H.E. Silva, J. Genre, A.G.D. Oliveira, E.S.T.D. Egito, Understanding drug release data through thermodynamic analysis. Materials 10, 651–669 (2017)

    PubMed Central  Google Scholar 

  38. S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 67, 217–223 (2010)

    PubMed  CAS  Google Scholar 

  39. R.S. Bhattarai, R.D. Bachu, S.H.S. Boddu, S. Bhaduri, Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics 1, 1–30 (2018)

    Google Scholar 

  40. U.E. Illangakoon, D.-G. Yu, B.S. Ahmad, N.P. Chatterton, G.R. Williams, 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning. Int. J. Pharm. 495, 895–902 (2015)

    PubMed  CAS  Google Scholar 

  41. C. Bounioux, R. Avrahami, G. Vasilyev, N. Patil, E. Zussman, R. Yerushalmi-Rozen, Single-step electrospinning of multi walled carbon nanotubes–poly(3-octylthiophene) hybrid nano-fibers. Polymer 86, 15–21 (2016)

    CAS  Google Scholar 

  42. P. Kampalanonwat, P. Supaphol, G.E. Morlock, Electrospun nanofiber layers with incorporated photoluminescence indicator for chromatography and detection of ultraviolet-active compounds. J. Chromatogr. A 1299, 110–117 (2013)

    PubMed  CAS  Google Scholar 

  43. M. Eskandari, Y. Yamini, L. Fotouhi, S. Seidi, Microextraction of mebendazole across supported liquid membrane forced by pH gradient and electrical field. J. Pharm. Biomed. Anal. 54, 1173–1179 (2011)

    PubMed  CAS  Google Scholar 

  44. D. Carson, Y. Jiang, K.A. Woodrow, Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers. Pharm. Res. 33, 125–136 (2016)

    PubMed  CAS  Google Scholar 

  45. S. Ansari, M. Karimi, Recent progress, challenges and trends in trace determination of drug analysis using molecularly imprinted solid-phase microextraction technology. Talanta 164, 612–625 (2017)

    PubMed  CAS  Google Scholar 

  46. M.M. Markoski, E.S. Trindade, G. Cabrera, A. Laschuk, N. Galanti, A. Zaha, H.B. Nader, H.B. Ferreira, Praziquantel and albendazole damaging action on in vitro developing Mesocestoides corti (Platyhelminthes: Cestoda). Parasitol. Int. 55, 51–61 (2006)

    PubMed  CAS  Google Scholar 

  47. S. Chaudhary, T. Garg, G. Rath, R.R. Murthy, A.K. Goyal, Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis. Artif. Cells Nanomed. Biotechnol. 44, 937–942 (2016)

    PubMed  CAS  Google Scholar 

  48. H.B. Dugstad, N.J. Petersen, H. Jensen, C. Gabel-Jensen, S.H. Hansen, S. Pedersen-Bjergaard, Development and characterization of a small electromembrane extraction probe coupled with mass spectrometry for real-time and online monitoring of in vitro drug metabolism. Anal. Bioanal. Chem. 406, 421–429 (2014)

    PubMed  CAS  Google Scholar 

  49. X. Qi, T. Su, X. Tong, W. Xiong, Q. Zeng, Y. Qian, Z. Zhou, X. Wu, Z. Li, L. Shen, X. He, Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture. Carbohydr. Polym. 224, 115208–115216 (2019)

    PubMed  CAS  Google Scholar 

  50. X. Qi, Z. Li, L. Shen, T. Qin, Y. Qian, S. Zhao, M. Liu, Q. Zeng, J. Shen, Highly efficient dye decontamination via microbial salecan polysaccharide-based gels. Carbohydr. Polym. 219, 1–11 (2019)

    PubMed  CAS  Google Scholar 

  51. X. Qi, L. Lin, L. Shen, Z. Li, T. Qin, Y. Qian, X. Wu, X. Wei, Q. Gong, J. Shen, Efficient decontamination of lead ions from wastewater by salecan polysaccharide-based hydrogels. ACS Sustain. Chem. Eng. 7, 11014–11023 (2019)

    CAS  Google Scholar 

  52. X. Qi, Y. Yuan, J. Zhang, J.W. Bulte, W. Dong, Oral administration of salecan-based hydrogels for controlled insulin delivery. J. Agric. Food Chem. 66, 10479–10489 (2018)

    PubMed  PubMed Central  CAS  Google Scholar 

  53. X. Qi, R. Liu, M. Chen, Z. Li, T. Qin, Y. Qian, S. Zhao, M. Liu, Q. Zeng, J. Shen, Removal of copper ions from water using polysaccharide-constructed hydrogels. Carbohydr. Polym. 209, 101–111 (2019)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Shafiei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, F., Shafiei, H. & Ghasemikhah, R. The effect of PVP application on Mebendazole release from electrospun nanofibers, kinetic study and thermodynamic analysis. J IRAN CHEM SOC 18, 1093–1102 (2021). https://doi.org/10.1007/s13738-020-02090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02090-y

Keywords

Navigation